


# COM Express™ conga-TR4

COM Express Type 6 Basic module based on 4th Generation AMD Embedded V- and R-Series SoC

User's Guide

Revision 1.5



# **Revision History**

| Revision | Date (yyyy.mm.dd) | Author | Changes                                                                                                                  |
|----------|-------------------|--------|--------------------------------------------------------------------------------------------------------------------------|
| 0.1      | 2018.01.15        | BEU    | Preliminary release                                                                                                      |
| 1.0      | 2018.10.15        | BEU    | Updated "Electrostatic Sensitive Device" information on page 3                                                           |
|          |                   |        | Corrected single/dual channel MT/s rates for two variants in table 2                                                     |
|          |                   |        | Updated section 2.2 "Supported Operating Systems"                                                                        |
|          |                   |        | Added values for four variants in section 2.5 "Power Consumption"                                                        |
|          |                   |        | Added values in section 2.6 "Supply Voltage Battery Power"                                                               |
|          |                   |        | Updated images in section 4 "Cooling Solutions"                                                                          |
|          |                   |        | Added note about requiring a re-driver on carrier for USB 3.1 Gen 2 in section 5.1.2 "USB" and 7.4 "USB Host Controller" |
|          |                   |        | Added Intel® Ethernet Controller i211 as assembly option in table 4 "Feature Summary" and section 5.1.4 "Ethernet"       |
|          |                   |        | Corrected section 7.4 "USB Host Controller"                                                                              |
|          |                   |        | Added section 9 "System Resources"                                                                                       |
| 1.1      | 2019.03.19        | BEU    | Corrected image in section 2.4 "Supply Voltage Standard Power"                                                           |
|          |                   |        | Updated section 10.4 "Supported Flash Devices"                                                                           |
| 1.2      | 2019.04.02        | BEU    | Corrected supported memory in table 2, 3, and added information about supported memory in table 4                        |
|          |                   |        | Added information about the new industrial variant in table 3 and 7                                                      |
| 1.3      | 2019.07.30        | BEU    | Updated note in section 4 "Cooling Solutions"                                                                            |
|          |                   |        | Changed number of supported USB 3.1 Gen 2 interfaces to two throughout the document                                      |
|          |                   |        | Added note regarding USB 3.1 Gen 2 in section 7.4 "USB Host Controller"                                                  |
| 1.4      | 2020.01.07        | BEU    | Updated title page                                                                                                       |
|          |                   |        | Updated CPU clock speed of variant 041603 in table 2                                                                     |
|          |                   |        | • Added variants 041620 and 041621 to table 3 and 7                                                                      |
|          |                   |        | Updated section 4 "Cooling Solutions"                                                                                    |
|          |                   |        | Updated references for power supply implementation guidelines in section 5.1.12 "Power Control"                          |
|          |                   |        | Added reference to BIOS Setup Description application note in section 10 "BIOS Setup Description"                        |
|          |                   |        | Updated section 10.3 "Updating the BIOS"                                                                                 |
|          |                   |        | Updated supported flash device in section 10.4 "Supported Flash Devices"                                                 |
|          |                   |        | Added note to several button signals in table 24                                                                         |
|          |                   |        | Updated section 11 "Industry Specifications"                                                                             |
| 1.5      | 2020.03.04        | BEU    | Added power consumption values and updated existing ones in table 7                                                      |



# **Preface**

This user's guide provides information about the components, features and interfaces available on the conga-TR4. It is one of three documents that should be referred to when designing a COM Express™ application. The other reference documents that should be used include the following:

COM Express<sup>™</sup> Design Guide COM Express<sup>™</sup> Specification

The links to these documents can be found on the congatec AG website at www.congatec.com

#### Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

#### Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

#### **Electrostatic Sensitive Device**



All congatec AG products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.



## Lead-Free Designs (RoHS)

All congatec AG designs are created from lead-free components and are completely RoHS compliant.

# **Symbols**

The following symbols are used in this user's guide:



#### Warning

Warnings indicate conditions that, if not observed, can cause personal injury.



#### Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.



Notes call attention to important information that should be observed.

## Copyright Notice

Copyright © 2018, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

#### **Trademarks**

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.



### Warranty

congatec AG makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec AG may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congated AG represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congated's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec AG prior to returning the non conforming product freight prepaid. congatec AG will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

### Certification

congatec AG is certified to DIN EN ISO 9001 standard.





# **Technical Support**

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

# **Terminology**

| Term | Description             |
|------|-------------------------|
| GB   | Gigabyte                |
| GHz  | Gigahertz               |
| kB   | Kilobyte                |
| MB   | Megabyte                |
| Mbit | Megabit                 |
| kHz  | Kilohertz               |
| MHz  | Megahertz               |
| TDP  | Thermal Design Power    |
| PCle | PCI Express             |
| SATA | Serial ATA              |
| PEG  | PCI Express Graphics    |
| PCH  | Platform Controller Hub |
| SM   | System Management       |
| N.C  | Not connected           |
| N/A  | Not available           |
| TBD  | To be determined        |



6/65

# Contents

| 1      | Introduction                     | 10  | 5.2.1 | PCI Express™ Graphics (PEG)                     |    |
|--------|----------------------------------|-----|-------|-------------------------------------------------|----|
| _      |                                  | 4.0 | 5.2.2 | Digital Display Interface (DDI)                 | 30 |
| 2      | Specifications                   | 13  | 6     | Additional Features                             | 31 |
| 2.1    | Feature List                     |     | 6.1   | congatec Board Controller (cBC)                 | 21 |
| 2.2    | Supported Operating Systems      |     | 6.1.1 | Board Information                               |    |
| 2.3    | Mechanical Dimensions            |     | 6.1.2 | Fan Control                                     |    |
| 2.4    | Supply Voltage Standard Power    | 15  |       | Power Loss Control                              |    |
| 2.4.1  | Electrical Characteristics       | 15  | 6.1.3 |                                                 |    |
| 2.4.2  | Rise Time                        | 16  | 6.1.4 | Watchdog                                        |    |
| 2.5    | Power Consumption                | 16  | 6.2   | OEM BIOS Customization                          |    |
| 2.6    | Supply Voltage Battery Power     | 17  | 6.2.1 | OEM Default Settings                            |    |
| 2.7    | Environmental Specifications     | 18  | 6.2.2 | OEM Boot Logo                                   |    |
| 3      | Block Diagram                    | 10  | 6.2.3 | OEM POST Logo                                   |    |
| 3      | Block Diagram                    | 17  | 6.2.4 | OEM BIOS Code/Data                              |    |
| 4      | Cooling Solutions                | 20  | 6.2.5 | OEM DXE Driver                                  |    |
|        |                                  |     | 6.3   | congatec Battery Management Interface           |    |
| 4.1    | CSA Dimensions                   |     | 6.4   | API Support (CGOS)                              |    |
| 4.2    | CSP Dimensions                   |     | 6.5   | Security Features                               |    |
| 4.3    | Heatspreader Dimensions          | 23  | 6.6   | Suspend to Ram                                  |    |
| 5      | Connector Rows                   | 24  | 7     | conga Tech Notes                                | 35 |
| 5.1    | Primary Connector Rows A and B   | 24  | 7.1   | AMD Processor Features                          | 35 |
| 5.1.1  | Serial ATA™ (SATA)               |     | 7.2   | Thermal Management                              | 36 |
| 5.1.2  | USB                              |     | 7.3   | ACPI Suspend Modes and Resume Events            | 36 |
| 5.1.3  | High Definition Audio (HDA)      |     | 7.4   | USB Host Controller                             | 38 |
| 5.1.4  | Ethernet                         |     | 8     | Signal Descriptions and Pinout Tables           | 39 |
| 5.1.5  | LPC Bus                          | 25  |       | -                                               |    |
| 5.1.6  | I <sup>2</sup> C Bus             |     | 8.1   | A-B Connector Signal Descriptions               |    |
| 5.1.7  | PCI Express™ (PCIe)              | 26  | 8.2   | C-D Connector Signal Descriptions               | 50 |
| 5.1.8  | LVDS                             |     | 9     | System Resources                                | 60 |
| 5.1.9  | Optional eDP                     |     | 9.1   | I/O Address Assignment                          | 40 |
| 5.1.10 | GPIO                             |     | 9.1.1 | LPC Bus                                         |    |
| 5.1.11 | UART                             |     | 9.2   |                                                 |    |
| 5.1.12 | Power Control                    |     | 9.3   | PCI Configuration Space MapI <sup>2</sup> C Bus | ۱۵ |
| 5.1.13 | Power Management                 |     | 9.4   | SM Bus                                          |    |
| 5.2    | Secondary Connector Rows C and D | 30  | 7.4   | JIVI DUS                                        | 02 |

| 10   | BIOS Setup Description63         | 10.3 | Updating the BIOS       | 64 |
|------|----------------------------------|------|-------------------------|----|
| 10.1 | Navigating the BIOS Setup Menu63 | 10.4 | Supported Flash Devices | 64 |
| 10.2 | BIOS Versions63                  | 11   | Industry Specifications | 65 |



# List of Tables

| Table 1  | COM Express™ 3.0 Pinout Types                     | 10 |
|----------|---------------------------------------------------|----|
| Table 2  | conga-TR4 Commercial Options                      |    |
| Table 3  | conga-TR4 Industrial Options                      |    |
| Table 4  | Feature Summary                                   |    |
| Table 5  | Electrical Characteristics                        | 15 |
| Table 6  | Measurement Description                           | 16 |
| Table 7  | Power Consumption Values                          | 17 |
| Table 8  | CMOS Battery Power Consumption                    | 17 |
| Table 9  | Cooling Solution Variants                         | 20 |
| Table 10 | Wake Events                                       |    |
| Table 11 | Signal Tables Terminology Descriptions            | 39 |
| Table 12 | Connector A-B Pinout                              |    |
| Table 13 | High Definition Audio Link Signal Descriptions    | 41 |
| Table 14 | LPC Signal Descriptions                           |    |
| Table 15 | Serial ATA Signal Descriptions                    | 42 |
| Table 16 | USB 2.0 Signal Descriptions                       |    |
| Table 17 | PCI Express Signal Descriptions (general purpose) | 44 |
| Table 18 | Gigabit Ethernet Signal Descriptions              | 45 |
| Table 19 | LVDS Signal Descriptions                          |    |
| Table 20 | UART Interface Signal Descriptions                |    |
| Table 21 | SPI BIOS Flash Interface Signal Descriptions      |    |
| Table 22 | General Purpose I/O Signal Descriptions           | 47 |
| Table 23 | Miscellaneous Signal Descriptions                 |    |
| Table 24 | Power and System Management Signal Descriptions   |    |
| Table 25 | Power and GND Signal Descriptions                 |    |
| Table 26 | Connector C-D Pinout                              |    |
| Table 27 | SuperSpeed USB Signal Descriptions                |    |
| Table 28 | PCI Express Signal Descriptions (general purpose) | 52 |
| Table 29 | PCI Express Signal Descriptions (x16 Graphics)    | 53 |
| Table 30 | DDI Signal Description                            | 55 |
| Table 31 | HDMI/DVI Signal Descriptions                      | 56 |
| Table 32 | DisplayPort (DP) Signal Descriptions              |    |
| Table 33 | Module Type Definition Signal Description         |    |
| Table 34 | Power and GND Signal Descriptions                 | 59 |
| Table 35 | PCI Configuration Space Map                       | 61 |
| Table 36 | References                                        | 65 |
| _        |                                                   |    |



# 1 Introduction

### COM Express™ Concept

COM Express<sup>TM</sup> is an open industry standard defined specifically for COMs (computer on modules). Its creation makes it possible to smoothly transition from legacy interfaces to the newest technologies available today. COM Express<sup>TM</sup> modules are available in following form factors:

Mini 84mm x 55mm
 Compact 95mm x 95mm
 Basic 125mm x 95mm
 Extended 155mm x 110mm

Table 1 COM Express™ 3.0 Pinout Types

| Types   | Connector Rows | PCIe Lanes | PCI    | IDE | SATA Ports | LAN ports           | USB 2.0 / USB 3.0 | Display Interfaces        |
|---------|----------------|------------|--------|-----|------------|---------------------|-------------------|---------------------------|
| Type 1  | A-B            | Up to 6    |        | -   | 4          | 1                   | 8/0               | VGA, LVDS                 |
| Type 2  | A-B C-D        | Up to 22   | 32 bit | 1   | 4          | 1                   | 8/0               | VGA, LVDS, PEG            |
| Туре 3  | A-B C-D        | Up to 22   | 32 bit | -   | 4          | 3                   | 8/0               | VGA,LVDS, PEG             |
| Type 4  | A-B C-D        | Up to 32   |        | 1   | 4          | 1                   | 8/0               | VGA,LVDS, PEG             |
| Type 5  | A-B C-D        | Up to 32   |        | -   | 4          | 3                   | 8/0               | VGA,LVDS, PEG             |
| Туре 6  | A-B C-D        | Up to 24   |        | -   | 4          | 1                   | 8 / 4*            | VGA,LVDS/eDP, PEG, 3x DDI |
| Type 7  | A-B C-D        | Up to 32   |        | -   | 2          | 5 (1x 1 G, 4x 10 G) | 4 / 4*            | -                         |
| Type 10 | A-B            | Up to 4    |        | -   | 2          | 1                   | 8 / 2*            | LVDS/eDP, 1xDDI           |

<sup>\*</sup> The SuperSpeed USB ports (USB 3.0) are not in addition to the USB 2.0 ports. Up to 4 of the USB 2.0 ports can support SuperSpeed USB.

The conga-TR4 modules use the Type 6 pinout definition and comply with COM Express 3.0 specification. They are equipped with two high performance connectors that ensure stable data throughput and support high bandwidth networking.

The COM (computer on module) integrates all the core components of a common PC and is mounted onto an application specific carrier board. COM modules are legacy-free (no Super I/O, PS/2 keyboard and mouse) and provide most of the functional requirements for any application. These functions include, but are not limited to, a rich complement of contemporary high bandwidth serial interfaces such as PCI Express, Serial ATA, USB 3.0/2.0, and 10 Gigabit Ethernet.

Carrier board designers can use as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration. Most importantly, COM Express™ modules are scalable, which means once an application has been created there is the ability to diversify the product range through the use of different performance class or form factor size modules. Simply unplug one module and replace it with another; no redesign is necessary.



# conga-TR4 Options Information

The conga-TR4 is available in five variants. This user's guide describes these variants. The table below shows the different configurations available. Check the Part No. that applies to your product. This will tell you what options described in this user's guide are available on your particular module.

Table 2 conga-TR4 Commercial Options

| Part-No.               | 041600                                                                                     | 041601                                                                                     | 041602                                                                  | 041603                                                                  |
|------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| SoC                    | V1807B                                                                                     | V1756B                                                                                     | V1605B                                                                  | V1202B                                                                  |
| CPU Clock Speed        | 3.35 GHz (3.8 GHz Turbo)                                                                   | 3.25 GHz (3.6 GHz Turbo)                                                                   | 2.0 GHz (3.6 GHz Turbo)                                                 | 2.3 GHz (3.2 GHz Turbo)                                                 |
| L2 Shared Cache        | 2 MB                                                                                       | 2 MB                                                                                       | 2 MB                                                                    | 1 MB                                                                    |
| Memory (DDR4)          | 2400 MT/s dual channel,<br>single/dual rank<br>3200 MT/s dual channel,<br>single rank only | 2400 MT/s dual channel,<br>single/dual rank<br>3200 MT/s dual channel,<br>single rank only | 2400 MT/s dual channel,<br>single/dual rank                             | 2400 MT/s dual channel,<br>single/dual rank                             |
| <b>Graphics Engine</b> | AMD Radeon™ Vega 11                                                                        | AMD Radeon™ Vega 8                                                                         | AMD Radeon™ Vega 8                                                      | AMD Radeon™ Vega 3                                                      |
| GPU Clock Speed        | 1300 MHz<br>(11 Compute Units)                                                             | 1300 MHz<br>(8 Compute Units)                                                              | 1100 MHz<br>(8 Compute Units)                                           | 1000 MHz<br>(3 Compute Units)                                           |
| PCle                   | 1x PCle Gen 3 (x8/x4)<br>4x PCle Gen 3 (x4/x2/x1)<br>4x PCle Gen 2 (x1)                    | 1x PCle Gen 3 (x8/x4)<br>4x PCle Gen 3 (x4/x2/x1)<br>4x PCle Gen 2 (x1)                    | 1x PCle Gen 3 (x8/x4)<br>4x PCle Gen 3 (x4/x2/x1)<br>4x PCle Gen 2 (x1) | 1x PCle Gen 3 (x8/x4)<br>4x PCle Gen 3 (x4/x2/x1)<br>4x PCle Gen 2 (x1) |
| USB                    | Up to:<br>2x USB 3.1 Gen 2<br>2x USB 3.1 Gen 1<br>4x USB 2.0                               | Up to:<br>2x USB 3.1 Gen 2<br>2x USB 3.1 Gen 1<br>4x USB 2.0                               | Up to:<br>2x USB 3.1 Gen 2<br>2x USB 3.1 Gen 1<br>4x USB 2.0            | Up to:<br>2x USB 3.1 Gen 2<br>2x USB 3.1 Gen 1<br>4x USB 2.0            |
| DDI                    | 2x Dedicated DDI<br>1x DDI multiplexed with<br>USB port                                    | 2x Dedicated DDI<br>1x DDI multiplexed with<br>USB port                                    | 2x Dedicated DDI<br>1x DDI multiplexed with<br>USB port                 | 2x Dedicated DDI<br>1x DDI multiplexed with<br>USB port                 |
| LVDS                   | 1x LVDS (default) or<br>1x eDP (optional)                                                  | 1x LVDS (default) or<br>1x eDP (optional)                                                  | 1x LVDS (default) or<br>1x eDP (optional)                               | 1x LVDS (default) or<br>1x eDP (optional)                               |
| SoC TDP                | 35-54W                                                                                     | 35-54W                                                                                     | 12-25W                                                                  | 12-25W                                                                  |



Table 3 conga-TR4 Industrial Options

| Part-No.        | 041610                                                                  | 041620                                                         | 041621                                                         |
|-----------------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| SoC             | V1404I                                                                  | R1606G                                                         | R1505G                                                         |
| CPU Clock Speed | 2.0 GHz (3.6 GHz Turbo)                                                 | 2.6 GHz (3.5 GHz Turbo)                                        | 2.4 GHz (3.3 GHz Turbo)                                        |
| L2 Shared Cache | 2 MB                                                                    | 1 MB                                                           | 1 MB                                                           |
| Memory (DDR4)   | 2400 MT/s dual channel,<br>single/dual rank                             | 2400 MT/s dual channel, single/dual rank                       | 2400 MT/s dual channel,<br>single/dual rank                    |
| Graphics Engine | AMD Radeon™ Vega 8                                                      | AMD Radeon™ Vega 3                                             | AMD Radeon™ Vega 3                                             |
| GPU Clock Speed | 1300 MHz<br>(8 Compute Units)                                           | 1200 MHz<br>(3 Compute Units)                                  | 1000 MHz<br>(3 Compute Units)                                  |
| PCle            | 1x PCle Gen 3 (x8/x4)<br>4x PCle Gen 3 (x4/x2/x1)<br>4x PCle Gen 2 (x1) | 1x PCle Gen 3 (x4)<br>3x PCle Gen 3 (x1)<br>4x PCle Gen 2 (x1) | 1x PCIe Gen 3 (x4)<br>3x PCIe Gen 3 (x1)<br>4x PCIe Gen 2 (x1) |
| USB             | Up to:<br>2x USB 3.1 Gen 2<br>2x USB 3.1 Gen 1<br>4x USB 2.0            | Up to:<br>2x USB 3.1 Gen 2<br>1x USB 3.1 Gen 1<br>4x USB 2.0   | Up to:<br>2x USB 3.1 Gen 2<br>1x USB 3.1 Gen 1<br>4x USB 2.0   |
| DDI             | 2x Dedicated DDI<br>1x DDI multiplexed with<br>USB port                 | 2x Dedicated DDI                                               | 2x Dedicated DDI                                               |
| LVDS/eDP        | 1x LVDS (default) or<br>1x eDP (optional)                               | 1x LVDS (default) or<br>1x eDP (optional)                      | 1x LVDS (default) or<br>1x eDP (optional)                      |
| SoC TDP         | 12-25W                                                                  | 12-25W                                                         | 12-25W                                                         |



# 2 Specifications

### 2.1 Feature List

Table 4 Feature Summary

| Form Factor           | Based on COM Express™ standard pinout Type 6 (Basic size 95 x 125 mm                                                                                                                                                                                                                                                           | ased on COM Express™ standard pinout Type 6 (Basic size 95 x 125 mm) |  |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| SoC                   | h Generation AMD Embedded V- and R-Series (FP5) SoC. <b>NOTE:</b> R-Series is not available yet.                                                                                                                                                                                                                               |                                                                      |  |  |  |  |  |  |
| Memory                | Two memory sockets (located on the top and bottom side of the conga-T - SO-DIMM ECC and non-ECC DDR4 memory modules - Data rates up to 3200 MT/s with single rank memory - Maximum 32 GB capacity (16 GB on each socket)                                                                                                       | - Data rates up to 3200 MT/s with single rank memory                 |  |  |  |  |  |  |
| Chipset               | Integrated in the SoC                                                                                                                                                                                                                                                                                                          |                                                                      |  |  |  |  |  |  |
| Audio                 | High Definition Audio (HDA) interface with support for up to three codec                                                                                                                                                                                                                                                       | S.                                                                   |  |  |  |  |  |  |
| Ethernet              | 1x Gigabit Ethernet PHY or via the onboard Intel® Ethernet i210 Controlle                                                                                                                                                                                                                                                      | er (i211 available as assembly option).                              |  |  |  |  |  |  |
| Graphics Options      | AMD Radeon™ Vega Graphics Core (GFX9). Supports:  - DirectX® 12, EGL 1.4, OpenCL® 2.1, OpenGL® ES (1.1, 2.x and 3.x), OpenGL® Next, OpenGL® 4.6  - Video Core Next (VCN): H.265/HEVC HW encode and decode, 10b HEVC and VP9 decode, MS compliant JPEG encode and decode  - Up to four independent displays (three in R-Series) |                                                                      |  |  |  |  |  |  |
|                       | 1x PCIe Gen 3 (x8/x4) (Only x4 in R-Series) 1x LVDS (default) or 1x eDP (optional) 2x Dedicated DDI (DP/HDMI/DVI) 1x DDI (DP/HDMI/DVI) (N/A in R-Series) multiplexed with USB 3.1 Gen 2                                                                                                                                        | NOTE: HDMI/DVI requires an external level shifter on carrier board.  |  |  |  |  |  |  |
| Peripheral Interfaces | USB up to: - 2x USB 3.1 Gen 2 - 2x USB 3.1 Gen 1 (Only 1x in R-Series) - 4x USB 2.0 2x SATA® 6 Gb/s ports 4x PCle Gen 3 (x4/x2/x1) (Only 3x PCle Gen3 (x1) in R-Series) 4x PCle Gen 2 (x1) 2x UART                                                                                                                             | Fan control GPIOs Buses: - SPI - LPC - SM - I <sup>2</sup> C         |  |  |  |  |  |  |
| BIOS                  | AMI Aptio® UEFI 5.x firmware; 8 MByte serial SPI with congatec Embeddo                                                                                                                                                                                                                                                         | ed BIOS features                                                     |  |  |  |  |  |  |
| Security              | Infineon LPC TPM 2.0 on module. Integrated TPM 2.0 in SoC.                                                                                                                                                                                                                                                                     |                                                                      |  |  |  |  |  |  |
| Power Management      | ACPI 5.0 compliant with battery support. Also supports Suspend to RAM                                                                                                                                                                                                                                                          | (S3).                                                                |  |  |  |  |  |  |
| cBC                   | Multi-stage watchdog, manufacturing and board information, board statis                                                                                                                                                                                                                                                        | stics, I2C bus, Power loss control.                                  |  |  |  |  |  |  |

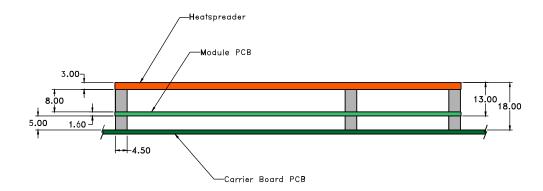


Some of the features mentioned in the table above are optional. See Table 2 and Table 3 for available features on each module variant.



# 2.2 Supported Operating Systems

The conga-TR4 supports the following operating systems.

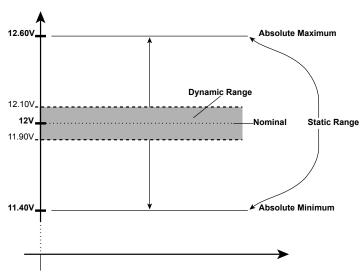

- Microsoft® Windows® 10 (64-bit)
- Microsoft® Windows® 10 IoT Enterprise (64-bit)
- Linux (32/64-bit)



To improve the graphic performance of conga-TR4 after installing Microsoft® Windows® Operating System, congatec AG recommends the installation of AMD catalyst driver.

### 2.3 Mechanical Dimensions

- 95.0 mm x 125.0 mm (3.74" x 4.92")
- Height approximately 18 or 21 mm (including heatspreader) depending on the carrier board connector that is used. If the 5mm (height) carrier board connector is used then approximate overall height is 18 mm. If the 8 mm (height) carrier board connector is used then approximate overall height is 21 mm.






# 2.4 Supply Voltage Standard Power

• 12V DC ± 5%

The dynamic range shall not exceed the static range.



### 2.4.1 Electrical Characteristics

Power supply pins on the module's connectors limit the amount of input power. The following table provides an overview of the limitations for pinout Type 6 (dual connector, 440 pins).

Table 5 Electrical Characteristics

| Power Rail | Module Pin         | Nominal       | Input     | Derated       | Max. Input Ripple | Max. Module Input        | Assumed    | Max. Load |
|------------|--------------------|---------------|-----------|---------------|-------------------|--------------------------|------------|-----------|
|            | Current Capability | Input (Volts) | Range     | Input (Volts) | (10Hz to 20MHz)   | Power (w. derated input) | Conversion | Power     |
|            | (Amps)             | -             | (Volts)   | -             | (mV)              | (Watts)                  | Efficiency | (Watts)   |
| VCC_12V    | 12                 | 12            | 11.4-12.6 | 11.4          | +/- 100           | 137                      | 85%        | 116       |
| VCC_5V-SBY | 2                  | 5             | 4.75-5.25 | 4.75          | +/- 50            | 9                        |            |           |
| VCC_RTC    | 0.5                | 3             | 2.0-3.3   |               | +/- 20            |                          |            |           |



#### 2.4.2 Rise Time

The input voltages shall rise from 10% of nominal to 90% of nominal at a minimum slope of 250V/s. The smooth turn-on requires that during the 10% to 90% portion of the rise time, the slope of the turn-on waveform must be positive.

#### 2.5 Power Consumption

The power consumption values were measured with the following setup:

- conga-TR4 module
- modified congatec carrier board
- conga-TR4 cooling solution
- Microsoft Windows® 10 (64-bit)



The SoC was stressed to its maximum workload with the AMD APU Validation Toolkit (AVT).

#### Table 6 Measurement Description

The power consumption values were recorded during the following system states:

| System State      | Description                                                                                                          | Comment                                                                                                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| S0: Minimum value | Lowest frequency mode (LFM) with minimum core voltage during desktop idle.                                           |                                                                                                                                       |
| S0: Maximum value | Highest frequency mode (HFM/Turbo Boost).                                                                            | The CPU was stressed to its maximum frequency.                                                                                        |
| S0: Peak value    | Highest current spike during the measurement of "S0: Maximum value". This state shows the peak value during runtime. | Consider this value when designing the system's power supply to ensure that sufficient power is supplied during worst case scenarios. |
| S3                | COM is powered by VCC_5V_SBY.                                                                                        |                                                                                                                                       |
| S5                | COM is powered by VCC_5V_SBY.                                                                                        |                                                                                                                                       |



- 1. The fan and SATA drives were powered externally.
- 2. All other peripherals except the LCD monitor were disconnected before measurement.



The tables below provide additional information about the power consumption data for each of the conga-TR4 variants offered. The values are recorded at various operating modes.

Table 7 Power Consumption Values

| Part   Memory Size   H.W   BIOS |                  | OS   | CPU      |            |         | Current (Amp.) S0 @12V and S3/S5 @5V |                |      |      |      |      |      |
|---------------------------------|------------------|------|----------|------------|---------|--------------------------------------|----------------|------|------|------|------|------|
| No.                             |                  | Rev. | Rev.     | (64-bit)   | Variant | Cores                                | Clock Speed    | S0:  | S0:  | S0:  | S3   | S5   |
|                                 |                  |      |          |            |         |                                      | (Turbo) in GHz | Min  | Max  | Peak |      |      |
| 041600                          | 2x2 GB DDR4-2400 | B.1  | TR44R010 | Windows 10 | V1807B  | 4                                    | 3.35 (3.75)    | 0.35 | 4.25 | 6.43 | 0.16 | 0.08 |
| 041601                          | 2x2 GB DDR4-2400 | B.1  | TR44R010 | Windows 10 | V1756B  | 4                                    | 3.25 (3.6)     | 0.34 | 4.08 | 7.02 | 0.16 | 0.08 |
| 041602                          | 2x2 GB DDR4-2400 | B.1  | TR44R010 | Windows 10 | V1605B  | 4                                    | 2.0 (3.6)      | 0.37 | 2.17 | 3.29 | 0.16 | 0.08 |
| 041603                          | 2x2 GB DDR4-2400 | B.1  | TR44R010 | Windows 10 | V1202B  | 2                                    | 2.5 (3.4)      | 0.35 | 2.18 | 2.58 | 0.16 | 0.08 |
| 041610                          | 2x4 GB DDR4-2400 | C.0  | TR44R205 | Windows 10 | V1404B  | 4                                    | 2.0 (3.6)      | 0.42 | 2.29 | 3.47 | 0.17 | 0.08 |
| 041620                          | 2x4 GB DDR4-2400 | C.0  | TR44R205 | Windows 10 | R1606G  | 2                                    | 2.6 (3.5)      | 0.38 | 2.22 | 2.57 | 0.16 | 0.08 |
| 041621                          | 2x4 GB DDR4-2400 | C.0  | TR44R205 | Windows 10 | R1505G  | 2                                    | 2.4 (3.3)      | 0.37 | 2.09 | 2.19 | 0.16 | 0.08 |



With fast input voltage rise time, the inrush current may exceed the measured peak current.

# 2.6 Supply Voltage Battery Power

Table 8 CMOS Battery Power Consumption

| RTC @ | Voltage | Current |
|-------|---------|---------|
| -10°C | 3V DC   | 2.25 μΑ |
| 20°C  | 3V DC   | 2.41 μΑ |
| 70°C  | 3V DC   | 3.08 μΑ |



Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.

Measure the CMOS battery power consumption in your customer specific application in worst case conditions (for example, during high temperature and high battery voltage).

Consider also the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9\_RTC\_Battery\_Lifetime.pdf on congatec AG website at www.congatec.com/support/application-notes.



We recommend to always have a CMOS battery present when operating the conga-TR4.

# 2.7 Environmental Specifications

Temperature (commercial variants) Operation: 0° to 60°C Storage: -40° to +85°C

Temperature (industrial variants) Operation: -40° to 85°C Storage: -40° to +85°C

Humidity Operation: 10% to 90% Storage: 5% to 95%



#### Caution

The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.

Humidity specifications are for non-condensing conditions.

# 3 Block Diagram





# 4 Cooling Solutions

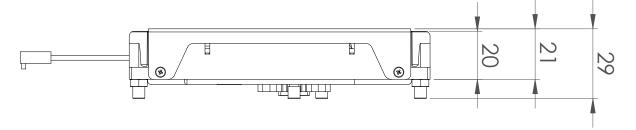
congatec AG offers the cooling solutions listed in Table 9 for conga-TCA5. The dimensions of the cooling solutions are shown in the sub-sections. All measurements are in millimeters.

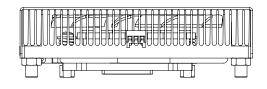
Table 9 Cooling Solution Variants

|   | Cooling Solution | Part No | Description                                      |
|---|------------------|---------|--------------------------------------------------|
| 1 | HSP              | 041651  | Heatspreader with 2.7 mm bore-hole standoffs.    |
|   |                  | 041652  | Heatspreader with M2.5 mm threaded standoffs.    |
| 2 | CSP              | 041653  | Passive cooling with 2.7 mm bore-hole standoffs. |
|   |                  | 041654  | Passive cooling with M2.5 mm threaded standoffs. |
| 3 | CSA              | 048555  | Active cooling with 2.7 mm bore-hole standoffs.  |
|   |                  | 048556  | Active cooling with M2.5 mm threaded standoffs.  |

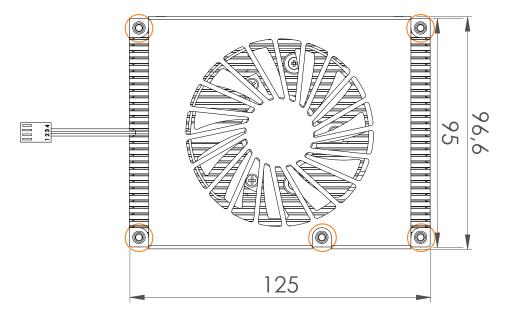


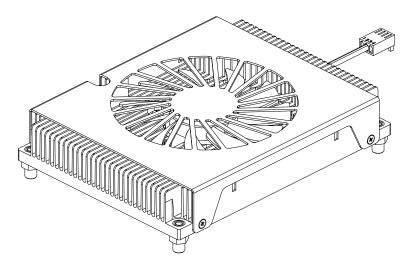
- 1. We recommend a maximum torque of 0.4 Nm for carrier board mounting screws and 0.5 Nm for module mounting screws.
- 2. The gap pad material used on congatec heatspreaders may contain silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.



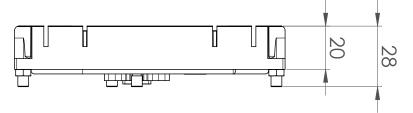


#### Caution

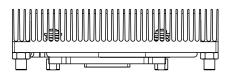
- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.
- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.





# 4.1 CSA Dimensions

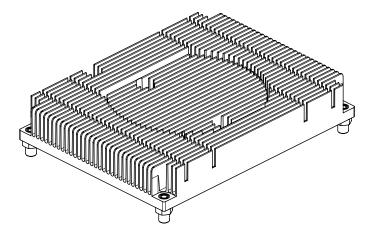




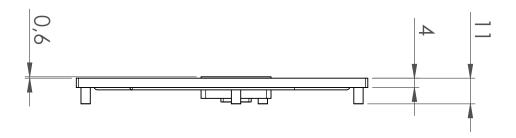


Threaded standoff for threaded version or non-threaded standoff for borehole version





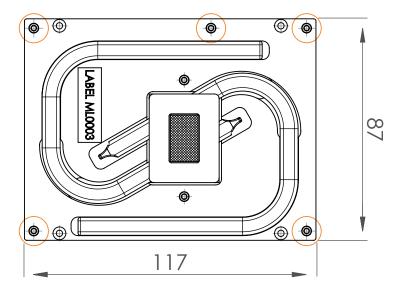

# 4.2 CSP Dimensions

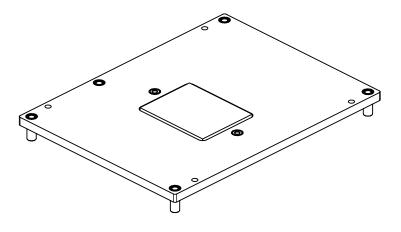





Threaded standoff for threaded version or non-threaded standoff for borehole version







# 4.3 Heatspreader Dimensions





Threaded standoff for threaded version or non-threaded standoff for borehole version





# **5** Connector Rows

The conga-TR4 is connected to the carrier board via two 220-pin connectors (COM Express Type 6 pinout). These connectors are broken down into four rows (rows A-B and C-D).

# 5.1 Primary Connector Rows A and B

The following subsystems can be found on the primary connector rows A and B.

### 5.1.1 Serial ATA™ (SATA)

The conga-TR4 offers two 6Gb/s SATA ports. A switch on the module routes them to the four ports of the COM Express connector. You can set the two active ports via BIOS setup.

#### 5.1.2 USB

The conga-TR4 offers signals for eight USB 2.0 ports. The signals for USB 2.0 ports 0-4 are routed from the SoC. The signals for USB 2.0 ports 5-7 are routed from a USB hub on the module.

The USB 2.0 signals can be combined with USB SuperSpeed signals to create up to two USB 3.1 Gen 2 ports and two USB 3.1 Gen 1 ports (1x in R-Series). For more information, see section 7.4 "USB Host Controller".

### 5.1.3 High Definition Audio (HDA)

The conga-TR4 offers signals for HDA and supports up to three external codecs. This interface supports multiple codec configurations on a single board as long as all codecs operate on the same voltage.



COM Express modules only support up to three data inputs (HDA\_SDIN[0:2]) as described in COM Express Specification 3.0. AC'97 audio codecs are not supported.



### 5.1.4 Ethernet

The conga-TR4 offers signals for one Gigabit Ethernet (GbE) port via GbE PHY or the integrated Intel® i210 controller (i211 available as assembly option). The ethernet interface consists of four pairs of low voltage differential pair signals designated from GBE0\_MDI0± to GBE0\_MDI3± plus control signals for link activity indicators. These signals can be used to connect to a 10/100/1000 BaseT RJ45 connector with integrated or external isolation magnetics on the carrier board.

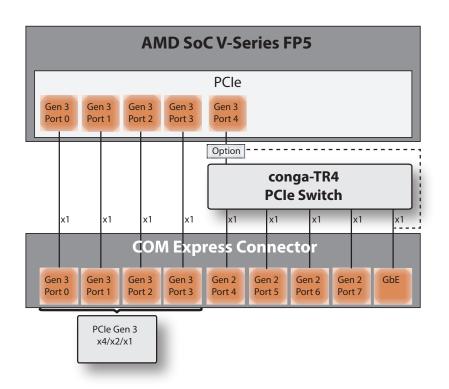


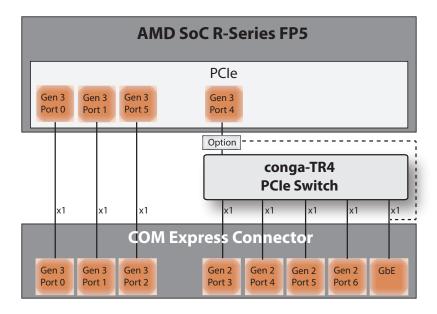
The GBEO\_LINK# output is only active during a 100Mbit or 1Gbit connection. It is not active during a 10Mbit connection. This is a limitation of Ethernet controller since it only has 3 LED outputs - ACT#, LINK100# and LINK1000#.

The GBEO\_LINK# signal is a logic AND of the GBEO\_LINK100# and GBEO\_LINK1000# signals on the conga-TR4.

Network Booting (PXE) is not possible with D-Link Switch Model No. DGS-1008D.

#### 5.1.5 LPC Bus


conga-TR4 offers the Low Pin Count (LPC) bus via the integrated controller hub. The LPC bus corresponds approximately to a serialized ISA bus yet with a significantly reduced number of signals. Due to the software compatibility to the ISA bus, I/O extensions such as additional serial ports can be easily implemented on an application specific baseboard using this bus. Many devices are available for this cost-efficient, low-speed interface designed to support low bandwidth and legacy devices. The LPC host bus controller supports one master DMA devices. See section 9 "System Resources" for more information about the LPC Bus.


#### 5.1.6 I<sup>2</sup>C Bus

The I<sup>2</sup>C bus is implemented through the congatec board controller and is accessed through the congatec CGOS driver and API. The controller provides a fast mode multi-master I<sup>2</sup>C bus that has maximum I<sup>2</sup>C bandwidth.

# 5.1.7 PCI Express™ (PCIe)

The conga-TR4 offers up to four PCIe Gen 3 ports (three in R-Series) and four PCIe Gen 2 ports as shown in the routing diagrams below:





#### 5.1.8 LVDS

The conga-TR4 offers signals for LVDS by default. Optionally, the conga-TR4 can offer signals for eDP instead. The eDP to LVDS bridge (NXP PTN3460) on the module processes the incoming DisplayPort (DP) stream, converts the DP protocol to LVDS protocol and transmits the processed stream in LVDS format.

The LVDS interface supports:

- Single or dual channel LVDS (color depths of 18 bpp or 24 bpp)
- VESA and JEIDA color mappings
- Resolution up to 1920x1200 @60 Hz in in dual LVDS bus mode (color depth 24 bpp)



# 5.1.9 Optional eDP

The conga-TR4 offers signals for LVDS by default. Optionally, the conga-TR4 can offer signals for eDP instead.

The eDP interface supports:

- VESA eDP Standard version 1.4
- Resolution up to 3840x2160 @60 Hz

#### 5.1.10 GPIO

The conga-TR4 offers general purpose inputs and outputs for custom system designs and can be controlled by the congatec Board Controller (cBC).

#### 5.1.11 UART

The conga-TR4 offers signals for two UART interfaces routed from the SoC by default. Optionally, the signals can be routed from the congatec Board Controller (cBC) instead.

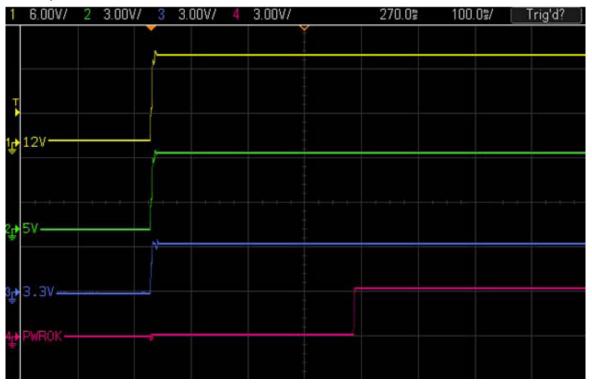
Two TTL compatible two wire ports are available on Type 6 COM Express modules. These pins are designated SER0\_TX, SER0\_RX, SER1\_TX and SER1\_RX. Data out of the module is on the \_TX pins. Hardware handshaking and hardware flow control are not supported. The module asynchronous serial ports are intended for general purpose use and for use with debugging software that makes use of the "console redirect" features available in many operating systems.

The UART controllers integrated in the cBC support up to 1MBit/s and can operate in low-speed, full-speed and high-speed modes. The UART interfaces are routed to the AB connector and require the congatec driver to function.



The UART interfaces currently do not support legacy COM port emulation.

#### 5.1.12 Power Control


#### PWR\_OK

Power OK from main power supply or carrier board voltage regulator circuitry. A high value indicates that the power is good and the module can start its onboard power sequencing. The PWR\_OK is a 3.3V signal according to the COM Express Specification. The use of this input is optional.



Carrier board hardware must drive this signal low until all power rails and clocks are stable. Releasing PWR\_OK too early or not driving it low at all can cause numerous boot up problems. It is a good design practice to delay the PWR\_OK signal a little (typically 100ms) after all carrier board power rails are up, to ensure a stable system. Although the PWR\_OK input is not mandatory for the onboard power-up sequencing, it is strongly recommended that the carrier board hardware drives the signal low until it is safe to let the module boot-up.

A sample screenshot is shown below:





The module is kept in reset as long as the PWR\_OK is driven by carrier board hardware.

The three typical usage scenarios for a carrier board design are:

- Connect PWR\_OK to the "power good" signal of an ATX type power supply.
- Connect PWR\_OK to the last voltage regulator in the chain on the carrier board.
- Simply pull PWR\_OK with a 1k resistor to the carrier board 3.3V power rail.

With this solution, it must be ensured that by the time the 3.3V is up, all carrier board hardware is fully powered and all clocks are stable.



The conga-TR4 module is capable of generating it's own power good through the use of an internal monitor on the  $\pm 12V \pm 5\%$  input voltage and/or the internal power supplies. The conga-TR4 also provides support for controlling ATX-style power supplies. When not using an ATX power supply then the conga-TR4's pins SUS\_S3/PS\_ON, 5V\_SB, and PWRBTN# should be left unconnected.

#### SUS\_S3#/PS\_ON#

The SUS\_S3#/PS\_ON# (pin A15 on the A-B connector) signal is an active-low output that can be used to turn on the main outputs of an ATX-style power supply. In order to accomplish this the signal must be inverted with an inverter/transistor that is supplied by standby voltage and is located on the carrier board.

#### PWRBTN#

When using ATX-style power supplies PWRBTN# (pin B12 on the A-B connector) is used to connect to a momentary-contact, active-low debounced push-button input while the other terminal on the push-button must be connected to ground. This signal is internally pulled up to 3V\_SB using a 10k resistor. When PWRBTN# is asserted it indicates that an operator wants to turn the power on or off. The response to this signal from the system may vary as a result of modifications made in BIOS settings or by system software.

## **Power Supply Implementation Guidelines**

12 volt input power is the sole operational power source for the conga-TR4. The remaining necessary voltages are internally generated on the module using onboard voltage regulators. A carrier board designer should be aware of the following important information when designing a power supply for a conga-TR4 application:

• It has also been noticed that on some occasions, problems occur when using a 12V power supply that produces non monotonic voltage when powered up. The problem is that some internal circuits on the module (e.g. clock-generator chips) will generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused resulting in a malfunction. It must be mentioned that this problem is quite rare but has been observed in some mobile power supply applications. The best way to ensure that this problem is not encountered is to observe the power supply rise waveform through the use of an oscilloscope to determine if the rise is indeed monotonic and does not have any dips. This should be done during the power supply qualification phase therefore ensuring that the above mentioned problem doesn't arise in the application. For more information, see the "Power Supply Design Guide for Desktop Platform Form Factors" document at www.intel.com.

### 5.1.13 Power Management

ACPI 5.0 compliant with battery support. Also supports Suspend to RAM (S3).



# 5.2 Secondary Connector Rows C and D

The following subsystems can be found on the secondary connector rows C and D.

# 5.2.1 PCI Express™ Graphics (PEG)

The conga-TR4 offers signals for a PEG x8 interface (x4 in R-Series). The default configuration of the PEG interface is one x8 link. The interface can be configured as a two x4 link in the BIOS setup menu.

### 5.2.2 Digital Display Interface (DDI)

The conga-TR4 offers signals for up to three DDI (two in R-Series):

- DDI1 is a native port
- DDI2 is multiplexed with a USB 3.1 Gen 2 port. See section section 7.4 "USB Host Controller" for more information.
- DDI3 (N/A in R-Series) is multiplexed with a USB 3.1 Gen 2 port. See section section 7.4 "USB Host Controller" for more information.

Each interface can be configured as DP++, HDMI or DVI. Any display combination is supported.

#### DP supports:

- VESA DisplayPort Standard version 1.4
- Resolution up to 3840x2160 @ 120 Hz (HBR3, 8.1 GT/s; requires re-timer)

### HDMI/DVI supports:

- HDMI Standard version 2.0b
- Resolution up to 4096x2160 @ 60 Hz (6 Gb/s; requires re-timer)
- Single-link DVI with resolution up to 1920x1200 @ 60 Hz



To support HDMI/DVI, an external level shifter (e.g PTN3360D) should be implemented on the user's carrier board.



# 6 Additional Features

# 6.1 congatec Board Controller (cBC)

The conga-TR4 is equipped with a Texas Instruments Tiva™ TM4E1231H6ZRB microcontroller. This onboard microcontroller plays an important role for most of the congatec embedded/industrial PC features. It fully isolates some of the embedded features, such as system monitoring or the I²C bus from the x86 core architecture, which results in higher embedded feature performance and more reliability, even when the x86 processor is in a low power mode. It also ensures that the congatec embedded feature set is fully compatible amongst all congatec modules.

#### 6.1.1 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions, and so on. It also keeps track of dynamically changing data like runtime meter and boot counter.

#### 6.1.2 Fan Control

The conga-TR4 has additional signals and functions to further improve system management. One of these signals is an output signal called FAN\_PWMOUT that allows system fan control using a PWM (Pulse Width Modulation) output. Additionally, there is an input signal called FAN\_TACHOIN that provides the ability to monitor the system's fan RPMs (revolutions per minute). This signal must receive two pulses per revolution in order to produce an accurate reading. For this reason, a two pulse per revolution fan or similar hardware solution is recommended.



A four wire fan must be used to generate the correct speed readout.

The congatec COM Express Type 6 and Type 10 modules use a Push-Pull output for the fan\_pwm signal instead of the open drain output specified in the COM Express specification. Although this does not comply with the COM Express specification 2.0, the benefits are obvious. The Push-Pull output optimizes the power consumed by the fan\_pwm signal without functional change.

#### 6.1.3 Power Loss Control

The cBC has full control of the power-up of the module and can be used to specify the behavior of the system after an AC power loss condition. Supported modes are "Always On", "Remain Off" and "Last State".



# 6.1.4 Watchdog

The conga-TR4 is equipped with a multi stage watchdog solution that is triggered by software. The COM Express™ Specification does not provide support for external hardware triggering of the Watchdog, which means the conga-TR4 does not support external hardware triggering. For more information about the Watchdog feature, see the BIOS setup description in section 10 of this document and application note AN3\_Watchdog.pdf on the congatec AG website at www.congatec.com.



The conga-TR4 module does not support the watchdog NMI mode.

#### 6.2 OEM BIOS Customization

The conga-TR4 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customization features supported are described in the following sections.

## 6.2.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8\_Create\_OEM\_Default\_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

### 6.2.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8\_Create\_And\_Add\_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.



### 6.2.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace/add the OEM POST logo.

#### 6.2.4 OEM BIOS Code/Data

With the congatec embedded BIOS it is possible for system designers to add their own code to the BIOS POST process. The congatec Embedded BIOS first calls the OEM code before handing over control to the OS loader.

Except for custom specific code, this feature can also be used to support Win XP SLP installation, Window 7 SLIC table (OA2.0), Windows 8 OEM activation (OA3.0), verb tables for HDA codecs, PCI/PCIe opROMs, bootloaders, rare graphic modes and Super I/O controller initialization.



The OEM BIOS code of the new UEFI based firmware is only called when the CSM (Compatibility Support Module) is enabled in the BIOS setup menu. Contact congatec technical support for more information on how to add OEM code.

#### 6.2.5 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OFM DXF driver.

# 6.3 congatec Battery Management Interface

In order to facilitate the development of battery powered mobile systems based on embedded modules, congated AG has defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congated Battery Management Interface Specification can provide the battery management functions supported by an ACPI capable operating system (e.g. charge state of the battery, information about the battery, alarms/events for certain battery states, ...) without the need for any additional modifications to the system BIOS.

In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-TR4 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I2C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system.



For more information about this subject, visit the congatec website and view the following documents:

- congatec Battery Management Interface Specification
- Battery System Design Guide
- conga-SBM³ User's Guide

# 6.4 API Support (CGOS)

In order to benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win32, Win64, Win CE, Linux. The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, which is available on the congatec website.

# 6.5 Security Features

The conga-TR4 offers a discrete TPM 2.0 (Infineon SLB9665). This TPM includes coprocessors to calculate efficient hash and RSA algorithms with key lengths up to 2048 bits as well as a real random number generator. Security sensitive applications like gaming and e-commerce will benefit also with improved authentication, integrity and confidence levels. The conga-TR4 also offers AMD Secure Processor™.

# 6.6 Suspend to Ram

The Suspend to RAM feature is available on the conga-TR4.



# 7 conga Tech Notes

The conga-TR4 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features. This information will also help to gain a better understanding of the information found in the System Resources section of this user's guide as well as some of the setup nodes found in the BIOS Setup Program description section.

### 7.1 AMD Processor Features

Zen microarchitecture:

- Fetch Four x86 instructions
- TLBs (Translation Lookaside Buffers) in Branch Prediction pipe
- Micro-op Cache 2K instructions
- 4 Integer Execution units
- 2 Floating Point units x 128 Fmacs
- 2 Load/Store units
- 64K, 4-way L1 Instruction cache
- 32K, 8-way L1 Data cache
- 512K L2 cache

For more information about AMD Technology, visit http://www.amd.com.



# 7.2 Thermal Management

ACPI is responsible for allowing the operating system to play an important part in the system's thermal management. This results in the operating system having the ability to take control of the operating environment by implementing cooling decisions according to the demands put on the CPU by the application.

The conga-TR4 ACPI thermal solution offers three different cooling policies:

#### Passive Cooling

When the temperature in the thermal zone must be reduced, the operating system can decrease the power consumption of the processor by throttling the processor clock. One of the advantages of this cooling policy is that passive cooling devices (in this case the processor) do not produce any noise. Use the "passive cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start or stop the passive cooling procedure.

#### Active Cooling

During this cooling policy the operating system is turning the fan on/off. Although active cooling devices consume power and produce noise, they also have the ability to cool the thermal zone without having to reduce the overall system performance. Use the "active cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start the active cooling device. It is stopped again when the temperature goes below the threshold (5°C hysteresis).

#### Critical Trip Point

If the temperature in the thermal zone reaches a critical point then the operating system will perform a system shut down in an orderly fashion in order to ensure that there is no damage done to the system as result of high temperatures. Use the "critical trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to shut down the system



The end user must determine the cooling preferences for the system by using the setup nodes in the BIOS setup program to establish the appropriate trip points. If passive cooling is activated and the processor temperature is above the trip point the processor clock is throttled. See section 12 of the ACPI Specification 2.0 C for more information about passive cooling.

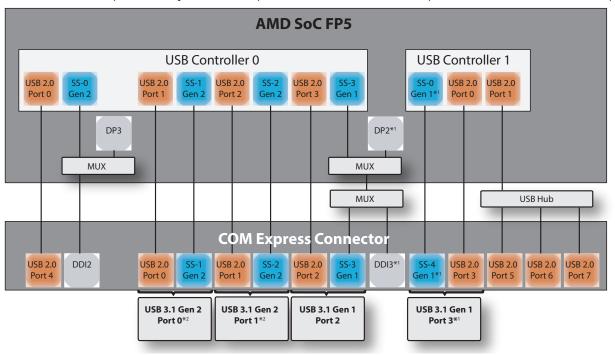
# 7.3 ACPI Suspend Modes and Resume Events

conga-TR4 supports S3 (STR= Suspend to RAM).

S4 (Suspend to Disk) is not supported by the BIOS (S4\_BIOS) but it is supported by most operating systems (S4\_OS= Hibernate).



This table lists the "Wake Events" that resume the system from S3 unless otherwise stated in the "Conditions/Remarks" column:


Table 10 Wake Events

| Wake Event                  | Conditions/Remarks                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Button                | Wakes unconditionally from S3-S5.                                                                                                                                                                                                                                                                                                                                        |
| Onboard LAN Event           | Device driver must be configured for Wake On LAN support.                                                                                                                                                                                                                                                                                                                |
| SMBALERT#                   | Wakes unconditionally from S3-S5.                                                                                                                                                                                                                                                                                                                                        |
| PCI Express WAKE#           | Wakes unconditionally from S3-S5.                                                                                                                                                                                                                                                                                                                                        |
| WAKE#                       | Wakes uncondionally from S3.                                                                                                                                                                                                                                                                                                                                             |
| PME#                        | Activate the wake up capabilities of a PCI device using Windows Device Manager configuration options for this device OR set Resume On PME# to Enabled in the Power setup menu.                                                                                                                                                                                           |
| USB Mouse/Keyboard Event    | When Standby mode is set to S3, USB hardware must be powered by standby power source.  Set USB Device Wakeup from S3/S4 to ENABLED in the ACPI setup menu (if setup node is available in BIOS setup program).  In Device Manager look for the keyboard/mouse devices. Go to the Power Management tab and check 'Allow this device to bring the computer out of standby'. |
| RTC Alarm                   | Activate and configure Resume On RTC Alarm in the Power setup menu. Only available in S5.                                                                                                                                                                                                                                                                                |
| Watchdog Power Button Event | Wakes unconditionally from S3-S5.                                                                                                                                                                                                                                                                                                                                        |



#### 7.4 USB Host Controller

The conga-TR4 offers signals for eight USB 2.0 ports. The signals for USB 2.0 ports 0-4 are routed from the SoC. The signals for USB 2.0 ports 5-7 are routed from a USB hub on the module. The USB 2.0 signals can be combined with USB SuperSpeed signals to create up to two USB 3.1 Gen 2 ports and two USB 3.1 Gen 1 ports (Only one Gen 1 port in R-Series). One USB port is shared with the DDI3 port (N/A in R-Series).





- \*1 Not available in the R-Series.
- \*2 The USB ports are configured in the BIOS setup menu to operate in Gen 1 mode. Before changing the setting to Gen 2, ensure the carrier board is designed for Gen 2 operation. For USB 3.1 Gen 2 design considerations, contact congatec technical support.

# 8 Signal Descriptions and Pinout Tables

The following section describes the signals found on COM Express™ Type 6 connectors used for congatec AG modules. The pinout of the modules complies with COM Express Type 6 Rev. 2.1.

Table 2 describes the terminology used in this section for the Signal Description tables. The PU/PD column indicates if a COM Express™ module pull-up or pull-down resistor has been used, if the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented by congatec.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

Table 11 Signal Tables Terminology Descriptions

| Term       | Description                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Input Pin                                                                                                                                                    |
| 0          | Output Pin                                                                                                                                                   |
| OC         | Open Collector                                                                                                                                               |
| OD         | Open Drain                                                                                                                                                   |
| PU         | Implemented pull-up resistor                                                                                                                                 |
| PD         | Implemented pull-down resistor                                                                                                                               |
| I/O 3.3V   | Bi-directional signal 3.3V tolerant                                                                                                                          |
| I/O 5V     | Bi-directional signal 5V tolerant                                                                                                                            |
| I/O 3.3VSB | Bi-directional signal 3.3V tolerant active in standby state                                                                                                  |
| I 3.3V     | Input 3.3V tolerant                                                                                                                                          |
| I 5V       | Input 5V tolerant                                                                                                                                            |
| O 3.3V     | Output 3.3V signal level                                                                                                                                     |
| O 5V       | Output 5V signal level                                                                                                                                       |
| Р          | Power Input                                                                                                                                                  |
| DDC        | Display Data Channel                                                                                                                                         |
| PCIE       | In compliance with PCI Express Base Specification                                                                                                            |
| PEG        | PCI Express Graphics                                                                                                                                         |
| SATA       | In compliance with Serial ATA specification, Revision 3.0.                                                                                                   |
| REF        | Reference voltage output. May be sourced from a module power plane.                                                                                          |
| PDS        | Pull-down strap. A module output pin that is either tied to GND or is not connected.  Used to signal module capabilities (pinout type) to the Carrier Board. |



# 8.1 A-B Connector Signal Descriptions

Table 12 Connector A-B Pinout

| Pin | Row A          | Pin | Row B        | Pin | Row A                   | Pin | Row B                |
|-----|----------------|-----|--------------|-----|-------------------------|-----|----------------------|
| A1  | GND (FIXED)    | B1  | GND (FIXED)  | A56 | PCIE_TX4-               | B56 | PCIE_RX4-            |
| A2  | GBE0_MDI3-     | B2  | GBE0_ACT#    | A57 | GND                     | B57 | GPO2                 |
| A3  | GBE0_MDI3+     | В3  | LPC_FRAME#   | A58 | PCIE_TX3+               | B58 | PCIE_RX3+            |
| A4  | GBE0_LINK100#  | B4  | LPC_AD0      | A59 | PCIE_TX3-               | B59 | PCIE_RX3-            |
| A5  | GBE0_LINK1000# | B5  | LPC_AD1      | A60 | GND (FIXED)             | B60 | GND (FIXED)          |
| A6  | GBE0_MDI2-     | В6  | LPC_AD2      | A61 | PCIE_TX2+               | B61 | PCIE_RX2+            |
| A7  | GBE0_MDI2+     | B7  | LPC_AD3      | A62 | PCIE_TX2-               | B62 | PCIE_RX2-            |
| A8  | GBE0_LINK#     | B8  | LPC_DRQ0#    | A63 | GPI1                    | B63 | GPO3                 |
| A9  | GBE0_MDI1-     | В9  | LPC_DRQ1 (*) | A64 | PCIE_TX1+               | B64 | PCIE_RX1+            |
| A10 | GBE0_MDI1+     | B10 | LPC_CLK      | A65 | PCIE_TX1-               | B65 | PCIE_RX1-            |
| A11 | GND (FIXED)    | B11 | GND (FIXED)  | A66 | GND                     | B66 | WAKE0#               |
| A12 | GBE0_MDI0-     | B12 | PWRBTN#      | A67 | GPI2                    | B67 | WAKE1#               |
| A13 | GBE0_MDI0+     | B13 | SMB_CK       | A68 | PCIE_TX0+               | B68 | PCIE_RX0+            |
| A14 | GBE0_CTREF (*) | B14 | SMB_DAT      | A69 | PCIE_TX0-               | B69 | PCIE_RX0-            |
| A15 | SUS_S3#        | B15 | SMB_ALERT#   | A70 | GND (FIXED)             | B70 | GND (FIXED)          |
| A16 | SATA0_TX+      | B16 | SATA1_TX+    | A71 | eDP_TX2+ / LVDS_A0+     | B71 | LVDS_B0+             |
| A17 | SATA0_TX-      | B17 | SATA1_TX-    | A72 | eDP_TX2- / LVDS_A0-     | B72 | LVDS_B0-             |
| A18 | SUS_S4#        | B18 | SUS_STAT#    | A73 | eDP_TX1+ / LVDS_A1+     | B73 | LVDS_B1+             |
| A19 | SATA0_RX+      | B19 | SATA1_RX+    | A74 | eDP_TX1- / LVDS_A1-     | B74 | LVDS_B1-             |
| A20 | SATA0_RX-      | B20 | SATA1_RX-    | A75 | eDP_TX0+ / LVDS_A2+     | B75 | LVDS_B2+             |
| A21 | GND (FIXED)    | B21 | GND (FIXED)  | A76 | eDP_TX0- / LVDS_A2-     | B76 | LVDS_B2-             |
| A22 | SATA2_TX+      | B22 | SATA3_TX+    | A77 | eDP / LVDS_VDD_EN       | B77 | LVDS_B3+             |
| A23 | SATA2_TX-      | B23 | SATA3_TX-    | A78 | LVDS_A3+                | B78 | LVDS_B3-             |
| A24 | SUS_S5#        | B24 | PWR_OK       | A79 | LVDS_A3-                | B79 | eDP / LVDS_BKLT_EN   |
| A25 | SATA2_RX+      | B25 | SATA3_RX+    | A80 | GND (FIXED)             | B80 | GND (FIXED)          |
| A26 | SATA2_RX-      | B26 | SATA3_RX-    | A81 | eDP_TX3+ / LVDS_A_CK+   | B81 | LVDS_B_CK+           |
| A27 | BATLOW#        | B27 | WDT          | A82 | eDP_TX3- / LVDS_A_CK-   | B82 | LVDS_B_CK-           |
| A28 | (S)ATA_ACT#    | B28 | HDA_SDIN2    | A83 | eDP_ AUX+ / LVDS_I2C_CK | B83 | eDP / LVDS_BKLT_CTRL |
| A29 | HDA_SYNC       | B29 | HDA_SDIN1    | A84 | eDP_AUX- / LVDS_I2C_DAT | B84 | VCC_5V_SBY           |
| A30 | HDA_RST#       | B30 | HDA_SDIN0    | A85 | GPI3                    | B85 | VCC_5V_SBY           |
| A31 | GND (FIXED)    | B31 | GND (FIXED)  | A86 | RSVD                    | B86 | VCC_5V_SBY           |
| A32 | HDA_BITCLK     | B32 | SPKR         | A87 | eDP_HPD                 | B87 | VCC_5V_SBY           |
| A33 | HDA_SDOUT      | B33 | I2C_CK       | A88 | PCIE0_CK_REF+           | B88 | BIOS_DIS1#           |
| A34 | BIOS_DIS0#     | B34 | I2C_DAT      | A89 | PCIE0_CK_REF-           | B89 | VGA_RED (*)          |
| A35 | THRMTRIP#      | B35 | THRM#        | A90 | GND (FIXED)             | B90 | GND (FIXED)          |
| A36 | USB6-          | B36 | USB7-        | A91 | SPI_POWER               | B91 | VGA_GRN (*)          |



| Pin | Row A       | Pin | Row B              | Pin  | Row A       | Pin  | Row B           |
|-----|-------------|-----|--------------------|------|-------------|------|-----------------|
| A37 | USB6+       | B37 | USB7+              | A92  | SPI_MISO    | B92  | VGA_BLU (*)     |
| A38 | USB_6_7_OC# | B38 | USB_4_5_OC#        | A93  | GPO0        | B93  | VGA_HSYNC (*)   |
| A39 | USB4-       | B39 | USB5-              | A94  | SPI_CLK     | B94  | VGA_VSYNC (*)   |
| A40 | USB4+       | B40 | USB5+              | A95  | SPI_MOSI    | B95  | VGA_I2C_CK (*)  |
| A41 | GND (FIXED) | B41 | GND (FIXED)        | A96  | TPM_PP      | B96  | VGA_I2C_DAT (*) |
| A42 | USB2-       | B42 | USB3-              | A97  | TYPE10#     | B97  | SPI_CS#         |
| A43 | USB2+       | B43 | USB3+              | A98  | SER0_TX     | B98  | RSVD            |
| A44 | USB_2_3_OC# | B44 | USB_0_1_OC#        | A99  | SER0_RX     | B99  | RSVD            |
| A45 | USB0-       | B45 | USB1-              | A100 | GND (FIXED) | B100 | GND (FIXED)     |
| A46 | USB0+       | B46 | USB1+              | A101 | SER1_TX     | B101 | FAN_PWMOUT      |
| A47 | VCC_RTC     | B47 | ESPI EN#(*)        | A102 | SER1_RX     | B102 | FAN_TACHIN      |
| A48 | RSVD        | B48 | USB0_HOST_PRSNT(*) | A103 | LID#        | B103 | SLEEP#          |
| A49 | GBE0_SDP    | B49 | SYS_RESET#         | A104 | VCC_12V     | B104 | VCC_12V         |
| A50 | LPC_SERIRQ  | B50 | CB_RESET#          | A105 | VCC_12V     | B105 | VCC_12V         |
| A51 | GND (FIXED) | B51 | GND (FIXED)        | A106 | VCC_12V     | B106 | VCC_12V         |
| A52 | PCIE_TX5+   | B52 | PCIE_RX5+          | A107 | VCC_12V     | B107 | VCC_12V         |
| A53 | PCIE_TX5-   | B53 | PCIE_RX5-          | A108 | VCC_12V     | B108 | VCC_12V         |
| A54 | GPI0        | B54 | GPO1               | A109 | VCC_12V     | B109 | VCC_12V         |
| A55 | PCIE_TX4+   | B55 | PCIE_RX4+          | A110 | GND (FIXED) | B110 | GND (FIXED)     |



The signals marked with an asterisk symbol (\*) are not supported on the conga-TR4.

Table 13 High Definition Audio Link Signal Descriptions

| Signal        | Pin #   | Description                                           | I/O      | PU/PD  | Comment                         |
|---------------|---------|-------------------------------------------------------|----------|--------|---------------------------------|
| HDA_RST#      | A30     | Reset output to CODEC, active low.                    | O 3.3VSB |        | AC'97 codecs are not supported. |
| HDA_SYNC      | A29     | Sample-synchronization signal to the CODEC(s).        | O 3.3VSB |        | AC'97 codecs are not supported. |
| HDA_BITCLK    | A32     | Serial data clock generated by the external CODEC(s). | O 3.3VSB |        | AC'97 codecs are not supported. |
| HDA_SDOUT     | A33     | Serial TDM data output to the CODEC.                  | O 3.3VSB |        | AC'97 codecs are not supported. |
| HDA_SDIN[2:0] | B28-B30 | Serial TDM data inputs from up to 3 CODECs.           | I 3.3VSB | PD 47k | AC'97 codecs are not supported. |



Table 14 LPC Signal Descriptions

| Signal      | Pin # | Description                                                                                                                                                                                                                                                                                                                                        | 1/0         | PU/PD       | Comment       |
|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|
| LPC_AD[0:3] | B4-B7 | LPC Mode: LPC multiplexed address, command and data bus                                                                                                                                                                                                                                                                                            | I/O 3.3V    |             |               |
| LPC_FRAME#  | В3    | LPC Mode: LPC Frame indicates the start of a LPC cycle.                                                                                                                                                                                                                                                                                            | O 3.3V      |             |               |
| LPC_CLK     | B10   | LPC Mode: LPC clock output, 33MHz                                                                                                                                                                                                                                                                                                                  | O 3.3V      |             |               |
| LPC_DRQ0#   | B8    | LPC Mode: LPC serial DMA request                                                                                                                                                                                                                                                                                                                   | I 3.3V      | PU 10K 3.3V |               |
| LPC_DRQ1#   | В8    | LPC Mode: LPC serial DMA request                                                                                                                                                                                                                                                                                                                   | I 3.3V      |             | Not supported |
| LPC_SERIRQ  | A50   | LPC Mode: LPC serial interrupt                                                                                                                                                                                                                                                                                                                     | I/O OD 3.3V | PU 10K 3.3V |               |
| SUS_STAT#   | B18   | LPC Mode: SUS_STAT# indicates imminent suspend operation. It is used to notify LPC devices that a low power state will be entered soon. LPC devices may need to preserve memory or isolate outputs during the low power state.                                                                                                                     | O 3.3V      |             |               |
| ESPI_EN#    | B47   | This signal is used by the Carrier to indicate the operating mode of the LPC/eSPI bus. If left unconnected on the carrier, LPC mode (default) is selected. If pulled to GND on the carrier, eSPI mode is selected. This signal is pulled to a logic high on the module through a resistor. The Carrier should only float this line or pull it low. | I 3.3V      |             |               |
| BIOS_DIS0   | A34   | Selection strap to determine the BIOS boot device. The Carrier should only float                                                                                                                                                                                                                                                                   | 1           |             |               |
| BIOS_DIS1   | B88   | these or pull them low. Refer to table 4.13 of the COM Express Module Base Specification for strapping options of BIOS disable signals.                                                                                                                                                                                                            | I           |             |               |

Table 15 Serial ATA Signal Descriptions

| Signal      | Pin # | Description                                                      | I/O    | PU/PD | Comment                                                  |
|-------------|-------|------------------------------------------------------------------|--------|-------|----------------------------------------------------------|
| SATA0_RX+   | A19   | Serial ATA channel 0, Receive Input differential pair.           | I SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA0_RX-   | A20   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA0_TX+   | A16   | Serial ATA channel 0, Transmit Output differential pair.         | O SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA0_TX-   | A17   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA1_RX+   | B19   | Serial ATA channel 1, Receive Input differential pair.           | I SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA1_RX-   | B20   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA1_TX+   | B16   | Serial ATA channel 1, Transmit Output differential pair.         | O SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA1_TX-   | B17   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA2_RX+   | A25   | Serial ATA channel 2, Receive Input differential pair.           | I SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA2_RX-   | A26   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA2_TX+   | A22   | Serial ATA channel 2, Transmit Output differential pair.         | O SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA2_TX-   | A23   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA3_RX+   | B25   | Serial ATA channel 3, Receive Input differential pair.           | I SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA3_RX-   | B26   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| SATA3_TX+   | B22   | Serial ATA channel 3, Transmit Output differential pair.         | O SATA |       | Supports Serial ATA specification, Revision 3.0.         |
| SATA3_TX-   | B23   |                                                                  |        |       | Only two SATA ports can be set to active via BIOS setup. |
| (S)ATA_ACT# | A28   | ATA (parallel and serial) or SAS activity indicator, active low. | O 3.3V |       |                                                          |



Table 16 USB 2.0 Signal Descriptions

| Signal      | Pin # | Description                                                                                                                                                                                      | I/O      | PU/PD            | Comment                                                                                     |
|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|---------------------------------------------------------------------------------------------|
| USB0+       | A46   | USB Port 0, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB0-       | A45   | USB Port 0, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB1+       | B46   | USB Port 1, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB1-       | B45   | USB Port 1, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB2+       | A43   | USB Port 2, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB2-       | A42   | USB Port 2, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB3+       | B43   | USB Port 3, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB3-       | B42   | USB Port 3, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB4+       | A40   | USB Port 4, data + or D+                                                                                                                                                                         | I/O      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB4-       | A39   | USB Port 4, data - or D-                                                                                                                                                                         | I/O      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1                                          |
| USB5+       | B40   | USB Port 5, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1.<br>Routed from a USB hub on the module. |
| USB5-       | B39   | USB Port 5, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1. Routed from a USB hub on the module.    |
| USB6+       | A37   | USB Port 6, data + or D+                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1. Routed from a USB hub on the module.    |
| USB6-       | A36   | USB Port 6, data - or D-                                                                                                                                                                         | 1/0      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1. Routed from a USB hub on the module.    |
| USB7+       | B37   | USB Port 7, data + or D+                                                                                                                                                                         | I/O      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1. Routed from a USB hub on the module.    |
| USB7-       | B36   | USB Port 7, data - or D-                                                                                                                                                                         | I/O      |                  | USB 2.0 compliant. Backwards compatible to USB 1.1. Routed from a USB hub on the module.    |
| USB_0_1_OC# | B44   | USB over-current sense, USB ports 0 and 1. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low. | I 3.3VSB | PU 10k<br>3.3VSB | Do not pull this line high on the carrier board.                                            |
| USB_2_3_OC# | A44   | USB over-current sense, USB ports 2 and 3. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low. | I 3.3VSB | PU 10k<br>3.3VSB | Do not pull this line high on the carrier board.                                            |
| USB_4_5_OC# | B38   | USB over-current sense, USB ports 4 and 5. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low. | I 3.3VSB | PU 10k<br>3.3VSB | Do not pull this line high on the carrier board.                                            |
| USB_6_7_OC# | A38   | USB over-current sense, USB ports 6 and 7. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low. | I 3.3VSB | PU 10k<br>3.3VSB | Do not pull this line high on the carrier board.                                            |



Table 17 PCI Express Signal Descriptions (general purpose)

| Signal                         | Pin #      | Description                                                                            | I/O    | PU/PD | Comment                                                                                                                                |
|--------------------------------|------------|----------------------------------------------------------------------------------------|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| PCIE_RX0+<br>PCIE_RX0-         | B68<br>B69 | PCI Express channel 0, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX0+<br>PCIE_TX0-         | A68<br>A69 | PCI Express channel 0, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_RX1+<br>PCIE_RX1-         | B64<br>B65 | PCI Express channel 1, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX1+<br>PCIE_TX1-         | A64<br>A65 | PCI Express channel 1, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_RX2+<br>PCIE_RX2-         | B61<br>B62 | PCI Express channel 2, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX2+<br>PCIE_TX2-         | A61<br>A62 | PCI Express channel 2, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_RX3+<br>PCIE_RX3-         | B58<br>B59 | PCI Express channel 3, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX3+<br>PCIE_TX3-         | A58<br>A59 | PCI Express channel 3, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_RX4+<br>PCIE_RX4-         | B55<br>B56 | PCI Express channel 4, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX4+<br>PCIE_TX4-         | A55<br>A56 | PCI Express channel 4, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_RX5+<br>PCIE_RX5-         | B52<br>B53 | PCI Express channel 5, Receive Input differential pair.                                | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_TX5+<br>PCIE_TX5-         | A52<br>A53 | PCI Express channel 5, Transmit Output differential pair.                              | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0                                                                                  |
| PCIE_CLK_REF+<br>PCIE_CLK_REF- | A88<br>A89 | PCI Express Reference Clock output for all PCI Express and PCI Express Graphics Lanes. | O PCIE |       | A PCI Express Gen2/3 compliant clock buffer chip must be used on the carrier board if more than one PCI Express device is designed in. |



Table 18 Gigabit Ethernet Signal Descriptions

| Gigabit Ethernet                                     | Pin #                   | Description                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                   | I/O           | PU/PD | Comment                                        |
|------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|---------------|-------|------------------------------------------------|
| GBE0_MDI0+<br>GBE0_MDI0-<br>GBE0_MDI1+<br>GBE0_MDI1- | A13<br>A12<br>A10<br>A9 | Pairs 0, 1, 2, 3.                                                     | net Controller 0: Med<br>The MDI can operate<br>pairs are unused in se                                                                                                                                                                                                                                                                                                                                                                                  | e in 1000, 100, and  | d 10Mbit/sec      | I/O<br>Analog |       | Twisted pair signals for external transformer. |
| GBE0_MDI2+                                           | A7                      |                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                  | 10                | 1             |       |                                                |
| GBE0_MDI2-<br>GBE0 MDI3+                             | A6<br>A3                | MDI[0]+/-                                                             | B1_DA+/-                                                                                                                                                                                                                                                                                                                                                                                                                                                | TX+/-                | TX+/-             |               |       |                                                |
| GBE0_MDI3-                                           | A2                      | MDI[1]+/-                                                             | B1_DB+/-                                                                                                                                                                                                                                                                                                                                                                                                                                                | RX+/-                | RX+/-             |               |       |                                                |
| GBE0_111B10                                          | ,                       | MDI[2]+/-                                                             | B1_DC+/-                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |               |       |                                                |
|                                                      |                         | MDI[3]+/-                                                             | B1_DD+/-                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |               |       |                                                |
| GBE0_ACT#                                            | B2                      | Gigabit Ethern                                                        | net Controller 0 activit                                                                                                                                                                                                                                                                                                                                                                                                                                | ty indicator, active | e low.            | O 3.3VSB      |       |                                                |
| GBE0_LINK#                                           | A8                      | Gigabit Ethern                                                        | net Controller 0 link in                                                                                                                                                                                                                                                                                                                                                                                                                                | ndicator, active lo  | N.                | O 3.3VSB      |       |                                                |
| GBE0_LINK100#                                        | A4                      | Gigabit Ethern                                                        | net Controller 0 100M                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit/sec link indica  | itor, active low. | O 3.3VSB      |       |                                                |
| GBE0_LINK1000#                                       | A5                      | Gigabit Ethern                                                        | net Controller 0 1000N                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mbit/sec link indic  | ator, active low. | O 3.3VSB      |       |                                                |
| GBE0_CTREF                                           | A14                     | center tap. The<br>of the module<br>reference volta<br>the case in wh | Gigabit Ethernet Controller 0 1000Mbit/sec link indicator, active low. Reference voltage for Carrier Board Ethernet channel 0 magnetics center tap. The reference voltage is determined by the requirements of the module PHY and may be as low as 0V and as high as 3.3V. The reference voltage output shall be current limited on the module. In the case in which the reference is shorted to ground, the current shall be limited to 250mA or less. |                      |                   |               |       | Not connected                                  |



The GBEO\_LINK# output is only active during a 100Mbit or 1Gbit connection. It is not active during a 10Mbit connection. This is a limitation of Ethernet controller since it only has 3 LED outputs, ACT#, LINK100# and LINK1000#. The GBEO\_LINK# signal is a logic AND of the GBEO\_LINK1000# and GBEO\_LINK1000# signals on the conga-TR4 module.

Table 19 LVDS Signal Descriptions

| Signal         | Pin # | Description                                          | I/O       | PU/PD        | Comment |
|----------------|-------|------------------------------------------------------|-----------|--------------|---------|
| LVDS_A0+       | A71   | LVDS Channel A differential pairs                    | O LVDS    |              |         |
| LVDS_A0-       | A72   | ·                                                    |           |              |         |
| LVDS_A1+       | A73   |                                                      |           |              |         |
| LVDS_A1-       | A74   |                                                      |           |              |         |
| LVDS_A2+       | A75   |                                                      |           |              |         |
| LVDS_A2-       | A76   |                                                      |           |              |         |
| LVDS_A3+       | A78   |                                                      |           |              |         |
| LVDS_A3-       | A79   |                                                      |           |              |         |
| LVDS_A_CK+     | A81   | LVDS Channel A differential clock                    | O LVDS    |              |         |
| LVDS_A_CK-     | A82   |                                                      |           |              |         |
| LVDS_B0+       | B71   | LVDS Channel B differential pairs                    | O LVDS    |              |         |
| LVDS_B0-       | B72   | · ·                                                  |           |              |         |
| LVDS_B1+       | B73   |                                                      |           |              |         |
| LVDS_B1-       | B74   |                                                      |           |              |         |
| LVDS_B2+       | B75   |                                                      |           |              |         |
| LVDS_B2-       | B76   |                                                      |           |              |         |
| LVDS_B3+       | B77   |                                                      |           |              |         |
| LVDS_B3-       | B78   |                                                      |           |              |         |
| LVDS_B_CK+     | B81   | LVDS Channel B differential clock                    | O LVDS    |              |         |
| LVDS_B_CK-     | B82   |                                                      |           |              |         |
| LVDS_VDD_EN    | A77   | LVDS panel power enable                              | O 3.3V    | PD 10K       |         |
| LVDS_BKLT_EN   | B79   | LVDS panel backlight enable                          | O 3.3V    | PD 10K       |         |
| LVDS_BKLT_CTRL | B83   | LVDS panel backlight brightness control              | O 3.3V    |              |         |
| LVDS_I2C_CK    | A83   | DDC lines used for flat panel detection and control. | OD 3.3V   | PU 2.2K 3.3V |         |
| LVDS_I2C_DAT   | A84   | DDC lines used for flat panel detection and control. | I/OD 3.3V | PU 2.2K 3.3V |         |

Table 20 UART Interface Signal Descriptions

| Signal  | Pin # | Description                             | I/O    | PU/PD       | Comment                                                    |
|---------|-------|-----------------------------------------|--------|-------------|------------------------------------------------------------|
| SERO_TX | A98   | General purpose serial port transmitter | O 3.3V |             | Signal is driven to logic 1 only. External PD is required. |
| SER1_TX | A101  | General purpose serial port transmitter | O 3.3V |             | Signal is driven to logic 1 only. External PD is required. |
| SERO_RX | A99   | General purpose serial port receiver    | I 3.3V | PU 47K 3.3V |                                                            |
| SER1_RX | A102  | General purpose serial port receiver    | I 3.3V | PU 47K 3.3V |                                                            |



### Table 21 SPI BIOS Flash Interface Signal Descriptions

| Signal     | Pin # | Description                                                                                                         | I/O      | PU/PD         | Comment                                          |
|------------|-------|---------------------------------------------------------------------------------------------------------------------|----------|---------------|--------------------------------------------------|
| SPI_CS#    | B97   | Chip select for Carrier Board SPI BIOS Flash.                                                                       | O 3.3VSB |               |                                                  |
| SPI_MISO   | A92   | Data in to module from carrier board SPI BIOS flash.                                                                | I 3.3VSB |               |                                                  |
| SPI_MOSI   | A95   | Data out from module to carrier board SPI BIOS flash.                                                               | O 3.3VSB |               |                                                  |
| SPI_CLK    | A94   | Clock from module to carrier board SPI BIOS flash.                                                                  | O 3.3VSB |               |                                                  |
| SPI_POWER  | A91   | Power source for carrier board SPI BIOS flash. SPI_POWER shall be used to power SPI BIOS flash on the carrier only. | P 3.3VSB |               |                                                  |
| BIOS_DIS0# | A34   | Selection strap to determine the BIOS boot device.                                                                  | I 3.3VSB | PU 10K 3.3VSB | Carrier shall pull to GND or left as no-connect. |
| BIOS_DIS1# | B88   | Selection strap to determine the BIOS boot device.                                                                  | I 3.3VSB | PU 10K 3.3VSB | Carrier shall pull to GND or left as no-connect  |

### Table 22 General Purpose I/O Signal Descriptions

| Signal | Pin # | Description                                                       | I/O    | PU/PD       | Comment |
|--------|-------|-------------------------------------------------------------------|--------|-------------|---------|
| GPO0   | A93   | General purpose output pins.                                      | O 3.3V |             |         |
| GPO1   | B54   | General purpose output pins.                                      | O 3.3V |             |         |
| GPO2   | B57   | General purpose output pins.                                      | O 3.3V |             |         |
| GPO3   | B63   | General purpose output pins.                                      | O 3.3V |             |         |
| GPI0   | A54   | General purpose input pins. Pulled high internally on the module. | I 3.3V | PU 10K 3.3V |         |
| GPI1   | A63   | General purpose input pins. Pulled high internally on the module. | I 3.3V | PU 10K 3.3V |         |
| GPI2   | A67   | General purpose input pins. Pulled high internally on the module. | I 3.3V | PU 10K 3.3V |         |
| GPI3   | A85   | General purpose input pins. Pulled high internally on the module. | I 3.3V | PU 10K 3.3V |         |

Table 23 Miscellaneous Signal Descriptions

| Signal     | Pin # | Description                                                                                                                                                            | I/O       | PU/PD          | Comment                                               |
|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------------------------------------|
| I2C_CK     | B33   | General purpose I <sup>2</sup> C port clock output/input                                                                                                               | I/OD 3.3V | PU 2.2K 3.3VSB |                                                       |
| I2C_DAT    | B34   | General purpose I <sup>2</sup> C port data I/O line                                                                                                                    | I/OD 3.3V | PU 2.2K 3.3VSB |                                                       |
| SPKR       | B32   | Output for audio enunciator, the "speaker" in PC-AT systems                                                                                                            | O 3.3V    |                |                                                       |
| WDT        | B27   | Output indicating that a watchdog time-out event has occurred.                                                                                                         | O 3.3V    |                |                                                       |
| FAN_PWMOUT | B101  | Fan speed control. Uses the Pulse Width Modulation (PWM)                                                                                                               | O OD      | PU 47K 3.3V    | Signal is driven to logic 1 only. External PD is      |
|            |       | technique to control the fan's RPM.                                                                                                                                    | 3.3V      |                | required.                                             |
| FAN_TACHIN | B102  | Fan tachometer input.                                                                                                                                                  | IOD       | PU 47K 3.3V    | Requires a fan with two-pulse output.                 |
| TPM_PP     | A96   | Physical Presence pin of Trusted Platform Module (TPM). Active high. TPM chip has an internal pull-down. This signal is used to indicate Physical Presence to the TPM. | I 3.3V    | PD 10K         | A TPM 2.0 chip is assembled on the module by default. |





The congatec COM Express Type 6 and Type 10 modules use a Push-Pull output for the fan\_pwm signal instead of the open drain output specified in the COM Express specification. Although this does not comply with the COM Express specification 3.0, the benefits are obvious. The Push-Pull output optimizes the power consumed by the fan\_pwm signal without functional change.

Table 24 Power and System Management Signal Descriptions

| Signal     | Pin # | Description                                                                                                                                                                                                                                                                       | I/O              | PU/PD          | Comment       |
|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|---------------|
| PWRBTN#    | B12   | Power button to bring system out of S5 (soft off), active on rising edge.  Note: For proper detection, assert a pulse width of at least 16 ms.                                                                                                                                    | I 3.3VSB         | PU 10K 3.3VSB  |               |
| SYS_RESET# | B49   | Reset button input. Active low input. Edge triggered. System will not be held in hardware reset while this input is kept low.  Note: For proper detection, assert a pulse width of at least 16 ms.                                                                                | I 3.3VSB         | PU 10K 3.3VSB  |               |
| CB_RESET#  | B50   | Reset output from module to Carrier Board. Active low. Issued by module chipset and may result from a low SYS_RESET# input, a low PWR_OK input, a VCC_12V power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the module software. | O 3.3V           |                |               |
| PWR_OK     | B24   | Power OK from main power supply. A high value indicates that the power is good.                                                                                                                                                                                                   | I 3.3V           | PU 10K 3.3V    |               |
| SUS_STAT#  | B18   | Indicates imminent suspend operation; used to notify LPC devices.                                                                                                                                                                                                                 | O 3.3VSB         |                |               |
| SUS_S3#    | A15   | Indicates system is in Suspend to RAM state. Active-low output. An inverted copy of SUS_S3# on the carrier board (also known as "PS_ON") may be used to enable the non-standby power on a typical ATX power supply.                                                               | O 3.3VSB         |                |               |
| SUS_S4#    | A18   | Indicates system is in Suspend to Disk state. Active low output.                                                                                                                                                                                                                  | O 3.3VSB         |                | Not supported |
| SUS_S5#    | A24   | Indicates system is in Soft Off state.                                                                                                                                                                                                                                            | O 3.3VSB         |                |               |
| WAKE0#     | B66   | PCI Express wake up signal.                                                                                                                                                                                                                                                       | I 3.3VSB         | PU 10K 3.3VSB  |               |
| WAKE1#     | B67   | General purpose wake up signal. May be used to implement wake-up on PS/2 keyboard or mouse activity.                                                                                                                                                                              | I 3.3VSB         | PU 10K 3.3VSB  |               |
| BATLOW#    | A27   | Battery low input. This signal may be driven low by external circuitry to signal that the system battery is low, or may be used to signal some other external power-management event.                                                                                             | I 3.3VSB         | PU 10K 3.3VSB  |               |
| THRM#      | B35   | Input from off-module temp sensor indicating an over-temp situation.                                                                                                                                                                                                              | I 3.3V           | PU 10k 3.3V    |               |
| THERMTRIP# | A35   | Active low output indicating that the CPU has entered thermal shutdown.                                                                                                                                                                                                           | O 3.3V           | PU 10k 3.3V    |               |
| SMB_CK     | B13   | System Management Bus bidirectional clock line.                                                                                                                                                                                                                                   | I/O 3.3VSB       | PU 2.2K 3.3VSB |               |
| SMB_DAT#   | B14   | System Management Bus bidirectional data line.                                                                                                                                                                                                                                    | I/O OD<br>3.3VSB | PU 2.2K 3.3VSB |               |
| SMB_ALERT# | B15   | System Management Bus Alert – active low input can be used to generate an SMI# (System Management Interrupt) or to wake the system.                                                                                                                                               | I 3.3VSB         | PU 10K 3.3VSB  |               |
| LID#       | A103  | Lid button. Used by the ACPI operating system for a LID switch.  Note: For proper detection, assert a pulse width of at least 16 ms.                                                                                                                                              | I 3.3V           | PU 47K 3.3VSB  |               |
| SLEEP#     | B103  | Sleep button. Used by the ACPI operating system to bring the system to sleep state or to wake it up again.  Note: For proper detection, assert a pulse width of at least 16 ms.                                                                                                   | I 3.3V           | PU 47K 3.3VSB  |               |

Table 25 Power and GND Signal Descriptions

| Signal     | Pin #                  | Description                                                                                                                                                                                                                                          | I/O | PU/PD | Comment |
|------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------|
| VCC_12V    | A104-A109<br>B104-B109 | Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used.                                                                                                                                                     | Р   |       |         |
| VCC_5V_SBY | B84-B87                | Standby power input: +5.0V nominal. If VCC5_SBY is used, all available VCC_5V_SBY pins on the connector(s) shall be used. Only used for standby and suspend functions. May be left unconnected if these functions are not used in the system design. | P   |       |         |
| VCC_RTC    | A47                    | Real-time clock circuit-power input. Nominally +3.0V.                                                                                                                                                                                                | Р   |       |         |
| GND        |                        | Ground - DC power and signal and AC signal return path. All available GND connector pins shall be used and tied to Carrier Board GND plane.                                                                                                          | P   |       |         |

# 8.2 C-D Connector Signal Descriptions

Table 26 Connector C-D Pinout

| Pin | Row C              | Pin | Row D              | Pin | Row C             | Pin | Row D             |
|-----|--------------------|-----|--------------------|-----|-------------------|-----|-------------------|
| C1  | GND (FIXED)        | D1  | GND (FIXED)        | C56 | PEG_RX1-          | D56 | PEG_TX1-          |
| C2  | GND                | D2  | GND                | C57 | TYPE1#            | D57 | TYPE2#            |
| C3  | USB_SSRX0-         | D3  | USB_SSTX0-         | C58 | PEG_RX2+          | D58 | PEG_TX2+          |
| C4  | USB_SSRX0+         | D4  | USB_SSTX0+         | C59 | PEG_RX2-          | D59 | PEG_TX2-          |
| C5  | GND                | D5  | GND                | C60 | GND (FIXED)       | D60 | GND (FIXED)       |
| C6  | USB_SSRX1-         | D6  | USB_SSTX1-         | C61 | PEG_RX3+          | D61 | PEG_TX3+          |
| C7  | USB_SSRX1+         | D7  | USB_SSTX1+         | C62 | PEG_RX3-          | D62 | PEG_TX3-          |
| C8  | GND                | D8  | GND                | C63 | RSVD              | D63 | DDPC_CTRLCLK (*)  |
| C9  | USB_SSRX2-         | D9  | USB_SSTX2-         | C64 | RSVD              | D64 | DDPC_CTRLDATA (*) |
| C10 | USB_SSRX2+         | D10 | USB_SSTX2+         | C65 | PEG_RX4+          | D65 | PEG_TX4+          |
| C11 | GND (FIXED)        | D11 | GND (FIXED)        | C66 | PEG_RX4-          | D66 | PEG_TX4-          |
| C12 | USB_SSRX3-         | D12 | USB_SSTX3-         | C67 | RAPID SHUTDOWN(*) | D67 | GND               |
| C13 | USB_SSRX3+         | D13 | USB_SSTX3+         | C68 | PEG_RX5+          | D68 | PEG_TX5+          |
| C14 | GND                | D14 | GND                | C69 | PEG_RX5-          | D69 | PEG_TX5-          |
| C15 | DDI1_PAIR6+(*)     | D15 | DDI1_CTRLCLK_AUX+  | C70 | GND (FIXED)       | D70 | GND (FIXED)       |
| C16 | DDI1_PAIR6- (*)    | D16 | DDI1_CTRLDATA_AUX- | C71 | PEG_RX6+          | D71 | PEG_TX6+          |
| C17 | RSVD               | D17 | RSVD               | C72 | PEG_RX6-          | D72 | PEG_TX6-          |
| C18 | RSVD               | D18 | RSVD               | C73 | GND               | D73 | GND               |
| C19 | PCIE_RX6+          | D19 | PCIE_TX6+          | C74 | PEG_RX7+          | D74 | PEG_TX7+          |
| C20 | PCIE_RX6-          | D20 | PCIE_TX6-          | C75 | PEG_RX7-          | D75 | PEG_TX7-          |
| C21 | GND (FIXED)        | D21 | GND (FIXED)        | C76 | GND               | D76 | GND               |
| C22 | PCIE_RX7+          | D22 | PCIE_TX7+          | C77 | RSVD              | D77 | RSVD              |
| C23 | PCIE_RX7-          | D23 | PCIE_TX7-          | C78 | PEG_RX8+ (*)      | D78 | PEG_TX8+ (*)      |
| C24 | DDI1_HPD           | D24 | RSVD               | C79 | PEG_RX8- (*)      | D79 | PEG_TX8- (*)      |
| C25 | DDI1_PAIR4+ (*)    | D25 | RSVD               | C80 | GND (FIXED)       | D80 | GND (FIXED)       |
| C26 | DDI1_PAIR4- (*)    | D26 | DDI1_PAIR0+        | C81 | PEG_RX9+ (*)      | D81 | PEG_TX9+ (*)      |
| C27 | RSVD               | D27 | DDI1_PAIR0-        | C82 | PEG_RX9- (*)      | D82 | PEG_TX9- (*)      |
| C28 | RSVD               | D28 | RSVD               | C83 | RSVD              | D83 | RSVD              |
| C29 | DDI1_PAIR5+ (*)    | D29 | DDI1_PAIR1+        | C84 | GND               | D84 | GND               |
| C30 | DDI1_PAIR5- (*)    | D30 | DDI1_PAIR1-        | C85 | PEG_RX10+ (*)     | D85 | PEG_TX10+ (*)     |
| C31 | GND (FIXED)        | D31 | GND (FIXED)        | C86 | PEG_RX10- (*)     | D86 | PEG_TX10- (*)     |
| C32 | DDI2_CTRLCLK_AUX+  | D32 | DDI1_PAIR2+        | C87 | GND               | D87 | GND               |
| C33 | DDI2_CTRLDATA_AUX- | D33 | DDI1_PAIR2-        | C88 | PEG_RX11+ (*)     | D88 | PEG_TX11+ (*)     |
| C34 | DDI2_DDC_AUX_SEL   | D34 | DDI1_DDC_AUX_SEL   | C89 | PEG_RX11- (*)     | D89 | PEG_TX11- (*)     |
| C35 | RSVD               | D35 | RSVD               | C90 | GND (FIXED)       | D90 | GND (FIXED)       |
| C36 | DDI3_CTRLCLK_AUX+  | D36 | DDI1_PAIR3+        | C91 | PEG_RX12+ (*)     | D91 | PEG_TX12+ (*)     |



| Pin | Row C              | Pin | Row D            | Pin  | Row C         | Pin  | Row D         |
|-----|--------------------|-----|------------------|------|---------------|------|---------------|
| C37 | DDI3_CTRLDATA_AUX- | D37 | DDI1_PAIR3-      | C92  | PEG_RX12- (*) | D92  | PEG_TX12- (*) |
| C38 | DDI3_DDC_AUX_SEL   | D38 | RSVD             | C93  | GND           | D93  | GND           |
| C39 | DDI3_PAIR0+        | D39 | DDI2_PAIR0+      | C94  | PEG_RX13+ (*) | D94  | PEG_TX13+ (*) |
| C40 | DDI3_PAIR0-        | D40 | DDI2_PAIR0-      | C95  | PEG_RX13- (*) | D95  | PEG_TX13- (*) |
| C41 | GND (FIXED)        | D41 | GND (FIXED)      | C96  | GND           | D96  | GND           |
| C42 | DDI3_PAIR1+        | D42 | DDI2_PAIR1+      | C97  | RVSD          | D97  | RSVD          |
| C43 | DDI3_PAIR1-        | D43 | DDI2_PAIR1-      | C98  | PEG_RX14+ (*) | D98  | PEG_TX14+ (*) |
| C44 | DDI3_HPD           | D44 | DDI2_HPD         | C99  | PEG_RX14- (*) | D99  | PEG_TX14- (*) |
| C45 | RSVD               | D45 | RSVD             | C100 | GND (FIXED)   | D100 | GND (FIXED)   |
| C46 | DDI3_PAIR2+        | D46 | DDI2_PAIR2+      | C101 | PEG_RX15+ (*) | D101 | PEG_TX15+ (*) |
| C47 | DDI3_PAIR2-        | D47 | DDI2_PAIR2-      | C102 | PEG_RX15- (*) | D102 | PEG_TX15- (*) |
| C48 | RSVD               | D48 | RSVD             | C103 | GND           | D103 | GND           |
| C49 | DDI3_PAIR3+        | D49 | DDI2_PAIR3+      | C104 | VCC_12V       | D104 | VCC_12V       |
| C50 | DDI3_PAIR3-        | D50 | DDI2_PAIR3-      | C105 | VCC_12V       | D105 | VCC_12V       |
| C51 | GND (FIXED)        | D51 | GND (FIXED)      | C106 | VCC_12V       | D106 | VCC_12V       |
| C52 | PEG_RX0+           | D52 | PEG_TX0+         | C107 | VCC_12V       | D107 | VCC_12V       |
| C53 | PEG_RX0-           | D53 | PEG_TX0-         | C108 | VCC_12V       | D108 | VCC_12V       |
| C54 | TYPE0#             | D54 | PEG_LANE_RV# (*) | C109 | VCC_12V       | D109 | VCC_12V       |
| C55 | PEG_RX1+           | D55 | PEG_TX1+         | C110 | GND (FIXED)   | D110 | GND (FIXED)   |



The signals marked with an asterisk symbol (\*) are not supported on the conga-TR4.

Table 27 SuperSpeed USB Signal Descriptions

| Signal     | Pin # | Description                                                                    | I/O | PU/PD | Comment |
|------------|-------|--------------------------------------------------------------------------------|-----|-------|---------|
| USB_SSRX0+ | C4    | Additional receive signal differential pairs for the Superspeed USB data path  | I   |       |         |
| USB_SSRX0- | C3    |                                                                                | I   |       |         |
| USB_SSTX0+ | D4    | Additional transmit signal differential pairs for the Superspeed USB data path | 0   |       |         |
| USB_SSTX0- | D3    |                                                                                | 0   |       |         |
| USB_SSRX1+ | C7    | Additional receive signal differential pairs for the Superspeed USB data path  | I   |       |         |
| USB_SSRX1- | C6    |                                                                                | I   |       |         |
| USB_SSTX1+ | D7    | Additional transmit signal differential pairs for the Superspeed USB data path | 0   |       |         |
| USB_SSTX1- | D6    |                                                                                | 0   |       |         |
| USB_SSRX2+ | C10   | Additional receive signal differential pairs for the Superspeed USB data path  | I   |       |         |
| USB_SSRX2- | C9    |                                                                                | I   |       |         |
| USB_SSTX2+ | D10   | Additional transmit signal differential pairs for the Superspeed USB data path | 0   |       |         |
| USB_SSTX2- | D9    |                                                                                | 0   |       |         |
| USB_SSRX3+ | C13   | Additional receive signal differential pairs for the Superspeed USB data path  | I   |       |         |
| USB_SSRX3- | C12   |                                                                                | I   |       |         |
| USB_SSTX3+ | D13   | Additional transmit signal differential pairs for the Superspeed USB data path | 0   |       |         |
| USB_SSTX3- | D12   |                                                                                | 0   |       |         |

Table 28 PCI Express Signal Descriptions (general purpose)

| Signal    | Pin # | Description                                               | I/O    | PU/PD | Comment                                               |
|-----------|-------|-----------------------------------------------------------|--------|-------|-------------------------------------------------------|
| PCIE_RX6+ | C19   | PCI Express channel 6, Receive Input differential pair.   | I PCIE |       | Supports PCI Express Base Specification, Revision 3.0 |
| PCIE_RX6- | C20   |                                                           |        |       |                                                       |
| PCIE_TX6+ | D19   | PCI Express channel 6, Transmit Output differential pair. | O PCIE |       | Supports PCI Express Base Specification, Revision 3.0 |
| PCIE_TX6- | D20   |                                                           |        |       |                                                       |
| PCIE_RX7+ | C22   | PCI Express channel 7, Receive Input differential pair.   | I PCIE |       | Not supported in R-Series.                            |
| PCIE_RX7- | C23   |                                                           |        |       | Supports PCI Express Base Specification, Revision 3.0 |
| PCIE_TX7+ | D22   | PCI Express channel 7, Transmit Output differential pair. | O PCIE |       | Not supported in R-Series.                            |
| PCIE_TX7- | D23   |                                                           |        |       | Supports PCI Express Base Specification, Revision 3.0 |

Table 29 PCI Express Signal Descriptions (x16 Graphics)

| Signal    | Pin # | Description                                            | I/C  | )   | PU/PD | Comment                     |
|-----------|-------|--------------------------------------------------------|------|-----|-------|-----------------------------|
| PEG_RX0+  | C52   | PCI Express Graphics Receive Input differential pairs. | I PC | CIE |       | PEG_RX[8:15]± lanes are not |
| PEG_RX0-  | C53   |                                                        |      |     |       | supported.                  |
| PEG_RX1+  | C55   |                                                        |      |     |       |                             |
| PEG_RX1-  | C56   |                                                        |      |     |       |                             |
| PEG_RX2+  | C58   |                                                        |      |     |       |                             |
| PEG_RX2-  | C59   |                                                        |      |     |       |                             |
| PEG_RX3+  | C61   |                                                        |      |     |       |                             |
| PEG_RX3-  | C62   |                                                        |      |     |       |                             |
| PEG_RX4+  | C65   |                                                        |      |     |       |                             |
| PEG_RX4-  | C66   |                                                        |      |     |       |                             |
| PEG_RX5+  | C68   |                                                        |      |     |       |                             |
| PEG_RX5-  | C69   |                                                        |      |     |       |                             |
| PEG_RX6+  | C71   |                                                        |      |     |       |                             |
| PEG_RX6-  | C72   |                                                        |      |     |       |                             |
| PEG_RX7+  | C74   |                                                        |      |     |       |                             |
| PEG_RX7-  | C75   |                                                        |      |     |       |                             |
| PEG_RX8+  | C78   |                                                        |      |     |       |                             |
| PEG_RX8-  | C79   |                                                        |      |     |       |                             |
| PEG_RX9+  | C81   |                                                        |      |     |       |                             |
| PEG_RX9-  | C82   |                                                        |      |     |       |                             |
| PEG_RX10+ | C85   |                                                        |      |     |       |                             |
| PEG_RX10- | C86   |                                                        |      |     |       |                             |
| PEG_RX11+ | C88   |                                                        |      |     |       |                             |
| PEG_RX11- | C89   |                                                        |      |     |       |                             |
| PEG_RX12+ | C91   |                                                        |      |     |       |                             |
| PEG_RX12- | C92   |                                                        |      |     |       |                             |
| PEG_RX13+ | C94   |                                                        |      |     |       |                             |
| PEG_RX13- | C95   |                                                        |      |     |       |                             |
| PEG_RX14+ | C98   |                                                        |      |     |       |                             |
| PEG_RX14- | C99   |                                                        |      |     |       |                             |
| PEG_RX15+ | C101  |                                                        |      |     |       |                             |
| PEG_RX15- | C102  |                                                        |      |     |       |                             |



| Signal       | Pin # | Description                                                                                   | I/O    | PU/PD | Comment                     |
|--------------|-------|-----------------------------------------------------------------------------------------------|--------|-------|-----------------------------|
| PEG_TX0+     | D52   | PCI Express Graphics Transmit Output differential pairs.                                      | O PCIE |       | PEG_TX[8:15]± lanes are not |
| PEG_TX0-     | D53   |                                                                                               |        |       | supported.                  |
| PEG_TX1+     | D55   |                                                                                               |        |       |                             |
| PEG_TX1-     | D56   |                                                                                               |        |       |                             |
| PEG_TX2+     | D58   |                                                                                               |        |       |                             |
| PEG_TX2-     | D59   |                                                                                               |        |       |                             |
| PEG_TX3+     | D61   |                                                                                               |        |       |                             |
| PEG_TX3-     | D62   |                                                                                               |        |       |                             |
| PEG_TX4+     | D65   |                                                                                               |        |       |                             |
| PEG_TX4-     | D66   |                                                                                               |        |       |                             |
| PEG_TX5+     | D68   |                                                                                               |        |       |                             |
| PEG_TX5-     | D69   |                                                                                               |        |       |                             |
| PEG_TX6+     | D71   |                                                                                               |        |       |                             |
| PEG_TX6-     | D72   |                                                                                               |        |       |                             |
| PEG_TX7+     | D74   |                                                                                               |        |       |                             |
| PEG_TX7-     | D75   |                                                                                               |        |       |                             |
| PEG_TX8+     | D78   |                                                                                               |        |       |                             |
| PEG_TX8-     | D79   |                                                                                               |        |       |                             |
| PEG_TX9+     | D81   |                                                                                               |        |       |                             |
| PEG_TX9-     | D82   |                                                                                               |        |       |                             |
| PEG_TX10+    | D85   |                                                                                               |        |       |                             |
| PEG_TX10-    | D86   |                                                                                               |        |       |                             |
| PEG_TX11+    | D88   |                                                                                               |        |       |                             |
| PEG_TX11-    | D89   |                                                                                               |        |       |                             |
| PEG_TX12+    | D91   |                                                                                               |        |       |                             |
| PEG_TX12-    | D92   |                                                                                               |        |       |                             |
| PEG_TX13+    | D94   |                                                                                               |        |       |                             |
| PEG_TX13-    | D95   |                                                                                               |        |       |                             |
| PEG_TX14+    | D98   |                                                                                               |        |       |                             |
| PEG_TX14-    | D99   |                                                                                               |        |       |                             |
| PEG_TX15+    | D101  |                                                                                               |        |       |                             |
| PEG_TX15-    | D102  |                                                                                               |        |       |                             |
| PEG_LANE_RV# | D54   | PCI Express Graphics lane reversal input strap. Pull low on the carrier board to reverse lane | 1      |       | Not supported.              |
|              |       | order.                                                                                        |        |       |                             |



The conga-TR4 supports PEG only up to x8 (x4 in R-Series).

Table 30 DDI Signal Description

| Signal             | Pin # | Description                                                                      | I/O       | PU/PD   | Comment |
|--------------------|-------|----------------------------------------------------------------------------------|-----------|---------|---------|
| DDI1_PAIR0+        | D26   | Multiplexed with DP1_LANE0+ and TMDS1_DATA2+.                                    | O PCIE    |         |         |
| DDI1_PAIR0-        | D27   | Multiplexed with DP1_LANE0- and TMDS1_DATA2                                      |           |         |         |
| DDI1_PAIR1+        | D29   | Multiplexed with DP1_LANE1+ and TMDS1_DATA1+.                                    | O PCIE    |         |         |
| DDI1_PAIR1-        | D30   | Multiplexed with DP1_LANE1- and TMDS1_DATA1                                      |           |         |         |
| DDI1_PAIR2+        | D32   | Multiplexed with DP1_LANE2+ and TMDS1_DATA0+.                                    | O PCIE    |         |         |
| DDI1_PAIR2-        | D33   | Multiplexed with DP1_LANE2- and TMDS1_DATA0                                      |           |         |         |
| DDI1_PAIR3+        | D36   | Multiplexed with DP1_LANE3+ and TMDS1_CLK+.                                      | O PCIE    |         |         |
| DDI1_PAIR3-        | D37   | Multiplexed with DP1_LANE3- and TMDS1_CLK                                        |           |         |         |
| DDI1_HPD           | C24   | Multiplexed with DP1_HPD and HDMI1_HPD.                                          | I 3.3V    | PD 100K |         |
| DDI1_CTRLCLK_AUX+  | D15   | Multiplexed with DP1_AUX+ and HMDI1_CTRLCLK.                                     | I/O PCIE  | PD 100K |         |
|                    |       | DP AUX+ function if DDI1_DDC_AUX_SEL is no connect.                              | OD 3.3V   |         |         |
|                    |       | HDMI/DVI I2C CTRLCLK if DDI1_DDC_AUX_SEL is pulled high.                         |           |         |         |
| DDI1_CTRLDATA_AUX- | D16   | Multiplexed with DP1_AUX- and HDMI1_CTRLDATA.                                    | I/O PCIE  | PU 100K |         |
|                    |       | DP AUX- function if DDI1_DDC_AUX_SEL is no connect.                              | I/OD 3.3V | 3.3V    |         |
|                    |       | HDMI/DVI I2C CTRLDATA if DDI1_DDC_AUX_SEL is pulled high.                        |           |         |         |
| DDI1_DDC_AUX_SEL   | D34   | Selects the function of DDI1_CTRLCLK_AUX+ and DDI1_CTRLDATA_AUX                  | I 3.3V    | PD 1M   |         |
|                    |       | This pin shall have a IM pull-down to logic ground on the module. If this input  |           |         |         |
|                    |       | is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the |           |         |         |
|                    |       | AUX pair contains the CTRLCLK and CTRLDATA signals.                              |           |         |         |
| DDI2_PAIR0+        | D39   | Multiplexed with DP2_LANE0+ and TMDS2_DATA2+.                                    | O PCIE    |         |         |
| DDI2_PAIR0-        | D40   | Multiplexed with DP2_LANE0- and TMDS2_DATA2                                      |           |         |         |
| DDI2_PAIR1+        | D42   | Multiplexed with DP2_LANE1+ and TMDS2_DATA1+.                                    | O PCIE    |         |         |
| DDI2_PAIR1-        | D43   | Multiplexed with DP2_LANE1- and TMDS2_DATA1                                      |           |         |         |
| DDI2_PAIR2+        | D46   | Multiplexed with DP2_LANE2+ and TMDS2_DATA0+.                                    | O PCIE    |         |         |
| DDI2_PAIR2-        | D47   | Multiplexed with DP2_LANE2- and TMDS2_DATA0                                      |           |         |         |
| DDI2_PAIR3+        | D49   | Multiplexed with DP2_LANE3+ and TMDS2_CLK+.                                      | O PCIE    |         |         |
| DDI2_PAIR3-        | D50   | Multiplexed with DP2_LANE3- and TMDS2_CLK                                        |           |         |         |
| DDI2_HPD           | D44   | Multiplexed with DP2_HPD and HDMI2_HPD.                                          | I 3.3V    | PD 100K |         |
| DDI2_CTRLCLK_AUX+  | C32   | Multiplexed with DP2_AUX+ and HDMI2_CTRLCLK.                                     |           | PD 100K |         |
|                    |       | DP AUX+ function if DDI2_DDC_AUX_SEL is no connect.                              | I/O PCIE  |         |         |
|                    |       | HDMI/DVI I2C CTRLCLK if DDI2_DDC_AUX_SEL is pulled high                          | OD 3.3V   |         |         |
| DDI2_CTRLDATA_AUX- | C33   | Multiplexed with DP2_AUX- and HDMI2_CTRLDATA.                                    |           | PU 100K |         |
|                    |       | DP AUX- function if DDI2_DDC_AUX_SEL is no connect.                              | I/O PCIE  | 3.3V    |         |
|                    |       | HDMI/DVI I2C CTRLDATA if DDI2_DDC_AUX_SEL is pulled high.                        | I/OD 3.3V |         |         |
| DDI2_DDC_AUX_SEL   | C34   | Selects the function of DDI2_CTRLCLK_AUX+ and DDI2_CTRLDATA_AUX                  | I 3.3V    | PD 1M   |         |
|                    |       | This pin shall have a IM pull-down to logic ground on the module. If this input  |           |         |         |
|                    |       | is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the |           |         |         |
|                    | -     | AUX pair contains the CTRLCLK and CTRLDATA signals                               |           |         |         |
| DDI3_PAIR0+        | C39   | Multiplexed with DP3_LANE0+ and TMDS3_DATA2+.                                    | O PCIE    |         |         |
| DDI3_PAIR0-        | C40   | Multiplexed with DP3_LANE0- and TMDS3_DATA2                                      |           |         |         |



| Signal             | Pin # | Description                                                                      | I/O       | PU/PD   | Comment |
|--------------------|-------|----------------------------------------------------------------------------------|-----------|---------|---------|
| DDI3_PAIR1+        | C42   | Multiplexed with DP3_LANE1+ and TMDS3_DATA1+.                                    | O PCIE    |         |         |
| DDI3_PAIR1-        | C43   | Multiplexed with DP3_LANE1- and TMDS3_DATA1                                      |           |         |         |
| DDI3_PAIR2+        | C46   | Multiplexed with DP3_LANE2+ and TMDS3_DATA0+.                                    | O PCIE    |         |         |
| DDI3_PAIR2-        | C47   | Multiplexed with DP3_LANE2- and TMDS3_DATA0                                      |           |         |         |
| DDI3_PAIR3+        | C49   | Multiplexed with DP3_LANE3+ and TMDS3_CLK+.                                      | O PCIE    |         |         |
| DDI3_PAIR3-        | C50   | Multiplexed with DP3_LANE3- and TMDS3_CLK                                        |           |         |         |
| DDI3_HPD           | C44   | Multiplexed with DP3_HPD and HDMI3_HPD.                                          | I 3.3V    | PD 100K |         |
| DDI3_CTRLCLK_AUX+  | C36   | Multiplexed with DP3_AUX+ and HDMI3_CTRLCLK.                                     | I/O PCIE  | PD 100k |         |
|                    |       | DP AUX+ function if DDI3_DDC_AUX_SEL is no connect.                              | OD 3.3V   |         |         |
|                    |       | HDMI/DVI I2C CTRLCLK if DDI3_DDC_AUX_SEL is pulled high                          |           |         |         |
| DDI3_CTRLDATA_AUX- | C37   | Multiplexed with DP3_AUX- and HDMI3_CTRLDATA.                                    | I/O PCIE  | PU 100k |         |
|                    |       | DP AUX- function if DDI3_DDC_AUX_SEL is no connect.                              | I/OD 3.3V |         |         |
|                    |       | HDMI/DVI I2C CTRLDATA if DDI3_DDC_AUX_SEL is pulled high.                        |           |         |         |
| DDI3_DDC_AUX_SEL   | C38   | Selects the function of DDI3_CTRLCLK_AUX+ and DDI3_CTRLDATA_AUX                  | I 3.3V    | PD 1M   |         |
|                    |       | This pin shall have a IM pull-down to logic ground on the module. If this input  |           |         |         |
|                    |       | is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the |           |         |         |
|                    |       | AUX pair contains the CTRLCLK and CTRLDATA signals                               |           |         |         |



The DDI interfaces support dual-mode DisplayPort. To support HDMI/DVI, an external level shifter (PTN3360D) should be implemented on the user's carrier board.

Table 31 HDMI/DVI Signal Descriptions

| Signal         | Pin # | Description                                                                 | I/O       | PU/PD   | Comment                                                        |
|----------------|-------|-----------------------------------------------------------------------------|-----------|---------|----------------------------------------------------------------|
| TMDS1_CLK +    | D36   | HDMI/DVI TMDS Clock output differential pair.                               | O PCIE    |         |                                                                |
| TMDS1_CLK -    | D37   | Multiplexed with DDI1_PAIR3+ and DDI1_PAIR3                                 |           |         |                                                                |
| TMDS1_DATA0+   | D32   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                                                |
| TMDS1_DATA0-   | D33   | Multiplexed with DDI1_PAIR2+ and DDI1_PAIR2                                 |           |         |                                                                |
| TMDS1_DATA1+   | D29   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                                                |
| TMDS1_DATA1-   | D30   | Multiplexed with DDI1_PAIR1+ and DDI1_PAIR1                                 |           |         |                                                                |
| TMDS1_DATA2+   | D26   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                                                |
| TMDS1_DATA2-   | D27   | Multiplexed with DDI1_PAIR0+ and DDI1_PAIR0                                 |           |         |                                                                |
| HDMI1_HPD      | C24   | HDMI/DVI Hot-plug detect. Multiplexed with DDI1_HPD.                        | I PCIE    | PD 100K |                                                                |
| HDMI1_CTRLCLK  | D15   | HDMI/DVI I <sup>2</sup> C Control Clock. Multiplexed with DDI1_CTRLCLK_AUX+ | OD 3.3V   | PD 100K | 2.2k to 3.3V Pull-up must be implemented on the carrier board. |
| HDMI1_CTRLDATA | D16   | HDMI/DVI I <sup>2</sup> C Control Data                                      | I/OD 3.3V | PU 100K | 2.2k to 3.3V Pull-up must be implemented on                    |
|                |       | Multiplexed with DDI1_CTRLDATA_AUX-                                         |           | 3.3V    | the carrier board.                                             |



| Signal         | Pin # | Description                                                                 | I/O       | PU/PD   | Comment                                       |
|----------------|-------|-----------------------------------------------------------------------------|-----------|---------|-----------------------------------------------|
| TMDS2_CLK +    | D49   | HDMI/DVI TMDS Clock output differential pair                                | O PCIE    |         |                                               |
| TMDS2_CLK -    | D50   | Multiplexed with DDI2_PAIR3+ and DDI2_PAIR3                                 |           |         |                                               |
| TMDS2_DATA0+   | D46   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS2_DATA0-   | D47   | Multiplexed with DDI2_PAIR2+ and DDI2_PAIR2                                 |           |         |                                               |
| TMDS2_DATA1+   | D42   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS2_DATA1-   | D43   | Multiplexed with DDI2_PAIR1+ and DDI2_PAIR1                                 |           |         |                                               |
| TMDS2_DATA2+   | D39   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS2_DATA2-   | D40   | Multiplexed with DDI2_PAIR0+ and DDI2_PAIR0                                 |           |         |                                               |
| HDMI2_HPD      | D44   | HDMI/DVI Hot-plug detect. Multiplexed with DDI2_HPD                         | I PCIE    | PD 100K |                                               |
| HDMI2_CTRLCLK  | C32   | HDMI/DVI I <sup>2</sup> C Control Clock                                     | OD 3.3V   | PD 100K | 2.2k to 3.3V Pull-up must be implemented on   |
|                |       | Multiplexed with DDI2_CTRLCLK_AUX+                                          |           |         | the carrier board.                            |
| HDM12_CTRLDATA | C33   | HDMI/DVI I <sup>2</sup> C Control Data                                      | I/OD 3.3V | PU 100K | 2.2k to 3.3V Pull-up must be implemented on   |
|                |       | Multiplexed with DDI2_CTRLDATA_AUX-                                         |           | 3.3V    | the carrier board.                            |
| TMDS3_CLK +    | C49   | HDMI/DVI TMDS Clock output differential pair                                | O PCIE    |         |                                               |
| TMDS3_CLK -    | C50   | Multiplexed with DDI3_PAIR3+ and DDI3_PAIR3                                 |           |         |                                               |
| TMDS3_DATA0+   | C46   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS3_DATA0-   | C47   | Multiplexed with DDI3_PAIR2+ and DDI3_PAIR2                                 |           |         |                                               |
| TMDS3_DATA1+   | C42   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS3_DATA1-   | C43   | Multiplexed with DDI3_PAIR1+ and DDI3_PAIR1                                 |           |         |                                               |
| TMDS3_DATA2+   | C39   | HDMI/DVI TMDS differential pair.                                            | O PCIE    |         |                                               |
| TMDS3_DATA2-   | C40   | Multiplexed with DDI3_PAIR0+ and DDI3_PAIR0                                 |           |         |                                               |
| HDMI3_HPD      | C44   | HDMI/DVI Hot-plug detect. Multiplexed with DDI3_HPD.                        | I PCIE    | PD 100K |                                               |
| HDMI3_CTRLCLK  | C36   | HDMI/DVI I <sup>2</sup> C Control Clock. Multiplexed with DDI3_CTRLCLK_AUX+ | OD 3.3V   | PD 100K | 2.2k to 3.3V Pull-up should be implemented on |
|                |       |                                                                             |           |         | the carrier board.                            |
| HDMI3_CTRLDATA | C37   | HDMI/DVI I <sup>2</sup> C Control Data. Multiplexed with DDI3_CTRLDATA_AUX- | I/OD 3.3V | PU 100K | 2.2k to 3.3V Pull-up should be implemented on |
|                |       |                                                                             |           | 3.3V    | the carrier board.                            |



To support the HDMI interface, an external level translator/shifter (e.g. PTN3360D) should be implemented on the user's baseboard.

Table 32 DisplayPort (DP) Signal Descriptions

| Signal     | Pin # | Description                                                                                                    | I/O      | PU/PD   | Comment |
|------------|-------|----------------------------------------------------------------------------------------------------------------|----------|---------|---------|
| DP1_LANE3+ | D36   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP1_LANE3- | D37   | secondary data. Multiplexed with DDI1_PAIR3+ and DDI1_PAIR3                                                    |          |         |         |
| DP1_LANE2+ | D32   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP1_LANE2- | D33   | secondary data. Multiplexed with DDI1_PAIR2+ and DDI1_PAIR2                                                    |          |         |         |
| DP1_LANE1+ | D29   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP1_LANE1- | D30   | secondary data. Multiplexed with DDI1_PAIR1+ and DDI1_PAIR1                                                    |          |         |         |
| DP1_LANE0+ | D26   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP1_LANE0- | D27   | secondary data. Multiplexed with DDI1_PAIR0+ and DDI1_PAIR0                                                    |          |         |         |
| DP1_HPD    | C24   | Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI1_HPD.                  | I 3.3V   | PD 100K |         |
| DP1_AUX+   | D15   | Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access. | I/O PCIE | PD 100K |         |
| DP1_AUX-   | D16   | Half-duplex bi-directional AUX channel for services such as link                                               | I/O PCIE | PU 100K |         |
| _          |       | configuration or maintenance and EDID access.                                                                  |          | 3.3V    |         |
| DP2_LANE3+ | D49   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP2_LANE3- | D50   | secondary data. Multiplexed with DDI2_PAIR3+ and DDI2_PAIR3-                                                   |          |         |         |
| DP2_LANE2+ | D46   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP2_LANE2- | D47   | secondary data. Multiplexed with DDI2_PAIR2+ and DDI2_PAIR2-                                                   |          |         |         |
| DP2_LANE1+ | D42   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP2_LANE1- | D43   | secondary data. Multiplexed with DDI2_PAIR1+ and DDI2_PAIR1-                                                   |          |         |         |
| DP2_LANE0+ | D39   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP2_LANE0- | D40   | secondary data. Multiplexed with DDI2_PAIR0+ and DDI1_PAIR0-                                                   |          |         |         |
| DP2_HPD    | D44   | Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI2_HPD.                  | I 3.3V   | PD 100K |         |
| DP2_AUX+   | C32   | Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access. | I/O PCIE | PD 100K |         |
| DP2_AUX-   | C33   | Half-duplex bi-directional AUX channel for services such as link                                               | I/O PCIE | PU 100K |         |
|            |       | configuration or maintenance and EDID access.                                                                  |          | 3.3V    |         |
| DP3_LANE3+ | C49   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP3_LANE3- | C50   | secondary data. Multiplexed with DDI3_PAIR3+ and DDI3_PAIR3                                                    |          |         |         |
| DP3_LANE2+ | C46   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP3_LANE2- | C47   | secondary data. Multiplexed with DDI3_PAIR2+ and DDI3_PAIR2                                                    |          |         |         |
| DP3_LANE1+ | C42   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP3_LANE1- | C43   | secondary data. Multiplexed with DDI3_PAIR1+ and DDI3_PAIR1                                                    |          |         |         |
| DP3_LANE0+ | C39   | Uni-directional main link for the transport of isochronous streams and                                         | O PCIE   |         |         |
| DP3_LANE0- | C40   | secondary data. Multiplexed with DDI3_PAIR0+ and DDI3_PAIR0                                                    |          |         |         |
| DP3_HPD    | C44   | Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI3_HPD.                  | I 3.3V   | PD 100K |         |
| DP3_AUX+   | C36   | Half-duplex bi-directional AUX channel for services such as link                                               | I/O PCIF | PD 100k |         |
|            |       | configuration or maintenance and EDID access.                                                                  |          |         |         |
| DP3_AUX-   | C37   | Half-duplex bi-directional AUX channel for services such as link                                               | I/O PCIE | PU 100k |         |
|            |       | configuration or maintenance and EDID access.                                                                  |          | 3.3V    |         |

Table 33 Module Type Definition Signal Description

| Signal                   | Pin # | Descript                                                                                                                                                                                                                         | tion                                         | I/O                                           | Comment                                                                                                                                                                                                                                                                            |  |                                                                                                                                     |  |
|--------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------|--|
| TYPE0# C54<br>TYPE1# C57 | C57   | The TYPE pins indicate to the Carrier Board the Pin-out Type that is implemented on the module. The pins are tied on the module to either ground (GND) or are no-connects (NC). For Pinout Type 1, these pins do not matter (X). |                                              |                                               |                                                                                                                                                                                                                                                                                    |  | TYPE[0:2]# signals are available on all modules                                                                                     |  |
| TYPE2#                   | D57   | TYPE2#                                                                                                                                                                                                                           | TYPE1#                                       | TYPE0#                                        |                                                                                                                                                                                                                                                                                    |  | following the Type 2-6 Pinout standard.                                                                                             |  |
|                          |       | X<br>NC<br>NC<br>NC<br>NC<br>GND<br>GND<br>X                                                                                                                                                                                     | X<br>NC<br>NC<br>GND<br>GND<br>NC<br>NC<br>X | X<br>NC<br>GND<br>NC<br>GND<br>NC<br>GND<br>X | Pinout Type 1 (deprecated) Pinout Type 2 (deprecated) Pinout Type 3 (deprecated) Pinout Type 4 (deprecated) Pinout Type 5 (deprecated) Pinout Type 6 Pinout Type 7 Pinout Type 10  nt combinatorial logic that monitors the module TYPE pins and keeps power off                   |  | The conga-TR4 is based on the COM Express Type 6 pinout therefore the pins 0 and 1 are not connected and pin 2 is connected to GND. |  |
|                          |       | (e.g deactivates the ATX_ON signal for an ATX power supply) if an incompatible module pin-out type is detected. The carrier board logic may also implement a fault indicator such as an LED.                                     |                                              |                                               |                                                                                                                                                                                                                                                                                    |  |                                                                                                                                     |  |
| TYPE10#                  | A97   | Dual use pin. Indicates to the carrier board that a Type 10 module is installed. Indicates to the carrier that a Rev. 1.0/2.0 module is installed.                                                                               |                                              |                                               |                                                                                                                                                                                                                                                                                    |  | Not connected to indicate "Pinout R2.0".                                                                                            |  |
|                          |       | TYPE10#                                                                                                                                                                                                                          |                                              |                                               |                                                                                                                                                                                                                                                                                    |  |                                                                                                                                     |  |
|                          |       | NC<br>PD<br>12V                                                                                                                                                                                                                  |                                              | Pinout R2<br>Pinout Tyl<br>Pinout R1          | pe 10 pull down to ground with 4.7k resistor                                                                                                                                                                                                                                       |  |                                                                                                                                     |  |
|                          |       | pin is defir<br>pin. R2.0 n                                                                                                                                                                                                      | ned as a no-<br>nodule Type                  | connect for<br>s 1-6 will no                  | V pool. In R1.0 modules this pin will connect to other VCC_12V pins. In R2.0 this Types 1-6. A carrier can detect a R1.0 module by the presence of 12V on this -connect this pin. R3.0 module types 6 and 7 will no-connect this pin. Type 10 nd through a 4.7K resistor.resistor. |  |                                                                                                                                     |  |

Table 34 Power and GND Signal Descriptions

| Signal  | Pin #                                                                                                                                                                                                                                   | Description                                                                                                                                 | I/O | PU/PD | Comment |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------|
| VCC_12V | C104-C109                                                                                                                                                                                                                               | Primary power input: +12V nominal. All available VCC_12V pins on the                                                                        | Р   |       |         |
|         | D104-D109                                                                                                                                                                                                                               | connector(s) shall be used.                                                                                                                 |     |       |         |
|         | C1, C2, C5, C8, C11, C14, C21, C31, C41, C51, C60, C70, C73, C76, C80, C84, C87, C90, C93, C96, C100, C103, C110, D1, D2, D5, D8, D11, D14, D21, D31, D41, D51, D60, D67, D70, D73, D76, D80, D84, D87, D90, D93, D96, D100, D103, D110 | Ground - DC power and signal and AC signal return path. All available GND connector pins shall be used and tied to carrier board GND plane. | P   |       |         |



## 9 System Resources

## 9.1 I/O Address Assignment

The I/O address assignment of the conga-TR4 module is functionally identical with a standard PC/AT.

The BIOS assigns PCI and PCI Express I/O resources from FFF0h downwards. Non PnP/PCI/PCI Express compliant devices must not consume I/O resources in that area.

#### 9.1.1 LPC Bus

On the conga-TR4, the PCIExpress Bus acts as the subtractive decoding agent. All I/O cycles that are not positively decoded are forwarded to the PCIExpress Bus—not the LPC Bus. Only specified I/O ranges are forwarded to the LPC Bus.

On the conga-TR4, the following I/O address ranges are sent to the LPC Bus:

```
SupperIO Index 2Eh-2Fh
  SerialPort0
              3F8h-3FFh
  SerialPort1
              2F8h-2FFh
  SerialPort2
              3F0h-3F7h
  SerialPort3
              3E0h-3E7h
  SerialPort4
              2F0h-2F7h
  SerialPort5
              2E0h-2E7h
  SerialPort6
              3E8h-3EFh
  SerialPort7
              2E8h-2EFh
    KbcPort 60h, 64h
BoardController F00h-FFFh
```

Some of these ranges are not available if a Super I/O is used on the carrier board or if they are occupied by the COMExpress on-module UARTs (they can be enabled in BIOS setup). The I/O range E38h-EBFh is always used by on-module LPC devices. Otherwise, the ranges listed above are available for customer use.

If you require additional LPC Bus resources other than those mentioned above, or more information about this subject, contact congatec technical support for assistance.



# 9.2 PCI Configuration Space Map

Table 35 PCI Configuration Space Map

| Bus Number (hex) | Device Number (hex) | Function Number (hex) | Device ID | Description and Device ID           |
|------------------|---------------------|-----------------------|-----------|-------------------------------------|
| 00h              | 00h                 | 00h                   | 0x15D0    | Root Complex                        |
| 00h              | 00h                 | 02h                   | 0x15D1    | IOMMU                               |
| 00h              | 01h                 | 00h                   | 0x1452    | PCIe Dummy Host Bridge              |
| 00h (see Note 2) | 01h                 | 01h                   | 0x15D3    | PCIe PEG Bridge 0                   |
| 00h (see Note 4) | 01h                 | 02h                   | 0x15D3    | PCIe PEG Bridge 1                   |
| 00h (see Note 1) | 01h                 | 03h                   | 0x15D3    | PCIe GPP Bridge 0                   |
| 00h (see Note 1) | 01h                 | 04h                   | 0x15D3    | PCIe GPP Bridge 1                   |
| 00h (see Note 1) | 01h                 | 05h                   | 0x15D3    | PCIe GPP Bridge 2                   |
| 00h (see Note 1) | 01h                 | 06h                   | 0x15D3    | PCIe GPP Bridge 3                   |
| 00h (see Note 1) | 01h                 | 07h                   | 0x15D3    | PCIe GPP Bridge 4                   |
| 00h              | 08h                 | 00h                   | 0x1452    | PCIe Dummy Host Bridge              |
| 00h              | 08h                 | 01h                   | 0x15DB    | Internal PCIe GPP Bridge 0 to Bus A |
| 00h              | 08h                 | 02h                   | 0x15DC    | Internal PCIe GPP Bridge 0 to Bus B |
| 00h              | 14h                 | 00h                   | 0x790B    | SMBus Controller                    |
| 00h              | 14h                 | 03h                   | 0x790E    | LPC Bridge                          |
| 00h              | 18h                 | 00h                   | 0x15E8    | Data Fabric                         |
| 00h              | 18h                 | 01h                   | 0x15E9    | Data Fabric                         |
| 00h              | 18h                 | 02h                   | 0x15EA    | Data Fabric                         |
| 00h              | 18h                 | 03h                   | 0x15EB    | Data Fabric                         |
| 00h              | 18h                 | 04h                   | 0x15EC    | Data Fabric                         |
| 00h              | 18h                 | 05h                   | 0x15ED    | Data Fabric                         |
| 00h              | 18h                 | 06h                   | 0x15EE    | Data Fabric                         |
| 00h              | 18h                 | 07h                   | 0x15EF    | Data Fabric                         |
| 01h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 0                  |
| 02h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 1                  |
| 03h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 2                  |
| 04h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 3                  |
| 05h              | 00h                 | 00h                   | 0x2608    | PCI Express Switch                  |
| 06h              | 01h                 | 00h                   | 0x2608    | PCI Express Switch port 0           |
| 06h              | 02h                 | 00h                   | 0x2608    | PCI Express Switch port 1           |
| 06h              | 03h                 | 00h                   | 0x2608    | PCI Express Switch port 2           |
| 06h              | 04h                 | 00h                   | 0x2608    | PCI Express Switch port 3           |
| 06h              | 05h                 | 00h                   | 0x2608    | PCI Express Switch port 4           |
| 07h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 4                  |
| 08h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 5                  |
| 09h (see Note 3) | 00h                 | 00h                   |           | PCI Express Port 6                  |



| 0Ah              | 00h | 00h |          | Intel PCIe Ethernet Network on Module |
|------------------|-----|-----|----------|---------------------------------------|
| OBh (see Note 3) | 00h | 00h |          | PCI Express Port 7                    |
| Bus A            | 00h | 00h | Internal | Internal GPU                          |
| Bus A            | 00h | 01h | Internal | Display HD Audio Controller           |
| Bus A            | 00h | 02h | Internal | Cryptographic Coprocessor             |
| Bus A            | 00h | 03h | Internal | USB 3.1                               |
| Bus A            | 00h | 04h | Internal | USB 3.1                               |
| Bus A            | 00h | 05h | Internal | Audio Processor                       |
| Bus A            | 00h | 06h | Internal | Audio Processor – HD Audio Controller |
| Bus A            | 00h | 07h | Internal | SCSI PCle                             |
| Bus B            | 00h | 00h | Internal | SATA AHCI Mode                        |



- 1. The PCI Express Ports may only be visible if the PCI Express Port is set to "Enabled" in BIOS setup and a device is attached to the corresponding PCI Express port on the carrier board.
- 2. The PCI Express Graphics Ports may only be visible if the PCI Express Graphics Port is set to "Enabled" in BIOS setup and a device is attached to the corresponding PCI Express port on the carrier board.
- 3. The above table represents a case when a single function PCI Express device is connected to all possible slots on the carrier board. The given bus numbers will change based on actual hardware configuration.
- 4. The PCI Express Port may only be visible if PEG port is set to 2 x4 and a device is attached to the corresponding PCI Express port on the carrier board.

#### 9.3 I<sup>2</sup>C Bus

There are no on-board resources connected to the I<sup>2</sup>C bus. Address 16h is reserved for congatec Battery Management solutions.

#### 9.4 SM Bus

System Management (SM) bus signals are connected to the AMD Chipset and the SM bus is not intended to be used by off-board non-system management devices. For more information about this subject please contact congatec technical support.



## 10 BIOS Setup Description

The BIOS setup description of the conga-TR4 can be viewed without having access to the module. However, access to the restricted area of the congatec website is required in order to download the necessary tool (CgMlfViewer) and Menu Layout File (MLF).

The MLF contains the BIOS setup description of a particular BIOS revision. The MLF can be viewed with the CgMlfViewer tool. This tool offers a search function to quickly check for supported BIOS features. It also shows where each feature can be found in the BIOS setup menu.

For more information, read the application note "AN42 - BIOS Setup Description" available at www.congatec.com.



If you do not have access to the restricted area of the congatec website, contact your local congatec sales representative.

## 10.1 Navigating the BIOS Setup Menu

The BIOS setup menu shows the features and options supported in the congatec BIOS. To access and navigate the BIOS setup menu, press the <DEL> or <F2> key during POST.

The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

#### 10.2 BIOS Versions

The BIOS displays the BIOS project name and the revision code during POST, and on the main setup screen. The initial production BIOS for conga-TR4 is identified as TR44R1xx, where:

- R is the identifier for a BIOS ROM file,
- 1 is the so called feature number and
- xx is the major and minor revision number.

The conga-TR4 binary size is 8 MB.



## 10.3 Updating the BIOS

BIOS updates are recommended to correct platform issues or enhance the feature set of the module. The conga-TR4 features a congatec/AMI AptioEFI firmware on an onboard flash ROM chip. You can update the firmware with the congatec System Utility. The utility has five versions—UEFI shell, DOS based command line<sup>1</sup>, Win32 command line, Win32 GUI, and Linux version.

For more information about "Updating the BIOS" refer to the user's guide for the congatec System Utility "CGUTLm1x.pdf" on the congatec website at www.congatec.com.



1. Deprecated



#### Caution

The DOS command line tool is not officially supported by congatec and therefore not recommended for critical tasks such as firmware updates. We recommend to use only the UEFI shell for critical updates.

## 10.4 Supported Flash Devices

The conga-TR4 supports the following flash devices:

• Winbond W25Q64JVSSIQ (8MB)

The flash device listed above can be used on the carrier board to support external BIOS. For more information about external BIOS support, refer to the Application Note AN7\_External\_BIOS\_Update.pdf on the congatec website at http://www.congatec.com.



# 11 Industry Specifications

#### Table 36 References

| Specification                                             | Link                          |
|-----------------------------------------------------------|-------------------------------|
| Low Pin Count Interface Specification, Revision 1.0 (LPC) | www.intel.com                 |
| Universal Serial Bus (USB) Specification, Revision 2.0    | www.usb.org                   |
| PCI Specification, Revision 2.3                           | www.pcisig.com/specifications |
| Serial ATA Specification, Revision 3.0                    | www.serialata.org             |
| PICMG® COM Express Module™ Base Specification             | www.picmg.org                 |
| PCI Express Base Specification, Revision 2.0              | www.pcisig.com/specifications |

