

conga-IC370 Thin Mini-ITX SBC

8th Generation Intel Core i7, i5, i3 and Celeron Single Chip Ultra Low TDP U-Series SoC

User's Guide

Revision 0.1 (Preliminary)

Revision History

Revision Date (yyyy-mm-do		Date (yyyy-mm-dd)	Author	Changes
	01	2020-02-26	AEM	Preliminary release

Preface

This user's guide provides information about the components, features and connectors available on the conga-IC370 Thin Mini-ITX single board computer.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec AG products are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congatec AG products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Connector Type

Describes the connector used on the Single Board Computer.

Copyright Notice

Copyright © 2020, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

Warranty

congatec AG makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec AG may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congated AG represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congated's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec AG prior to returning the non conforming product freight prepaid. congatec AG will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Certification

congatec AG is certified to DIN EN ISO 9001 standard.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Terminology

Term	Description			
cBC	congatec Board Controller			
DVI	Digital Visual Interface			
eDP	Embedded DisplayPort			
GbE	Gigabit Ethernet			
HDA	High Definition Audio			
HDMI	High Definition Multimedia Interface			
iDP	Internal DisplayPort			
I ² C Bus	Inter-Integrated Circuit Bus			
LPC	Low Pin-Count			
LVDS	Low-Voltage Differential Signaling			
N.A	Not available			
N.C	Not connected			
PCle	Peripheral Component Interface Express			
PN	Part Number			
PTT	Platform Trust Technology			
SATA	Serial AT Attachment			
SBC	Single Board Computer			
SDIO	Secure Digital Input Output			
SM Bus	System Management Bus			
SPI	Serial Peripheral Interface			
S/PDIF	Sony/Philips Digital Interconnect Format			
S5e	Enhanced S5			
T.B.D	To be determined			
USB	Universal Serial Bus			
WDG	Watchdog			

Contents

1	Introduction		.3.1	Display Port	
1.1	Mini-ITX Concept	1 ()	.3.2	LVDS Header	
1.2	conga-IC370	10 5	.3.3	Embedded DisplayPort (eDP)	
1.2.1	Options Information		.3.4	Panel Voltage Selection Jumper	35
1.2.2	Optional Accessories		.3.5	Backlight Power Connector	
	·	5	.3.6	Backlight Power Selection Jumper	
2	Specification	_	.3.7	Backlight Control Jumper	
2.1	Feature List	13	.3.8	Monitor OFF Header	
2.2	Supported Operating Systems		.4	USB Connectors	
2.3	Mechanical Dimensions	Г	.4.1	Rear USB 3.1 Gen 2 Port	39
2.4	Supply Voltage Power		.4.2	Rear USB 2.0 Port	39
2.5	Power Consumption		.4.3	Internal USB 2.0 Port	
2.6	Supply Voltage Battery Power		.4.4	Internal USB 3.1 Gen 2 Port	40
2.7	Environmental Specifications	. 5 17 5	.5	SATA Connectors	41
	•	۲	.5.1	Standard SATA Port	41
3	Block Diagram	18 ₅	.5.2	M.2 Key B Socket	
4		. 5	.5.3	SATA Power Header	42
4	Cooling Solution	19 5	.5.4	Optional SATADOM Power Connector	42
4.1	CSA Dimensions	20 5	.6	Ethernet	43
4.2	Assembly Instruction	21 5	.7	Audio Connectors	44
5	Connector Description	22 5	.7.1	Rear Audio	44
J	·	5	.7.2	Internal Audio	45
5.1	Power Supply Connectors		.7.2.1	Stereo Speaker Header	45
5.1.1	DC Power Jack (Rear I/O)	_	.7.2.2	Digital Microphone Header	45
5.1.2	Mini-Fit 4-Pin Connector2	_	.7.2.3	S/PDIF Header	46
5.1.3	Power Status LEDs	23 5	.7.2.4	Front Panel Header	46
5.1.4	Power-On Control Jumper	24 5	.8	COM Port Headers	47
5.1.5	CMOS Battery Header	24 5	.8.1	COM 1 and 2 (RS232/RS422/RS484)	47
5.2	Extension Sockets	25 5	.8.2	COM 3 and 4 (RS232)	
5.2.1	PCIe x4 Socket	_	.9	GPIO Header	48
5.2.2	PCIe Mini Card Socket	26 5	.10	I ² C Bus/SM Bus Header	49
5.2.3	M.2 Key B Socket2		5.11	Front Panel Header	
5.2.4	M.2 Key E Socket2	29 5	.12	CPU and System Fan Header	51
5.2.5	PCI Express Routing		5.13	Sleep and Lid Button Header	
5.3	Display Interfaces		.14	External BIOS Flash	

List of Tables

lable 1	conga-IC3/0 Variants	
Table 2	Cooling/IO Shield	
Table 3	Cables	
Table 4	Adapters	
Table 5	Power Supply	
Table 6	Feature Summary	
Table 7	Measurement Description	
Table 8	Power Consumption Values	
Table 9	CMOS Battery Power Consumption	16
Table 10	Cooling Solution Variants	
Table 11	X58 Pinout Description	22
Table 12	X59 Pinout Description	
Table 13	Front Panel LED States	
Table 14	Onboard LED States	
Table 15	Auto Power-On Control	
Table 16	X8 Pinout Description	25
Table 17	X9 Pinout Description	26
Table 18	X64 Pinout Description	
Table 19	X12 Pinout Description	
Table 20	X32 Pinout Description	
Table 21	X27 Pinout Description	
Table 22	X29 Pinout Description	
Table 23	X31 Pinout Description	
Table 24	X30 Pinout Description	
Table 25	X65 Pinout Description	
Table 26	X28 Pinout Description	
Table 27	X21 Pinout Description	
Table 28	X66 Pinout Description.	
Table 29	X5 LED Description	
Table 30	X6 LED Description	
Table 31	X33 Pinout Description	
Table 32	X34 Pinout Description	
Table 33	X38 Pinout Description	
Table 34	X35 Pinout Description	
Table 35	X37 Pinout Description	46
Table 36	X36 Pinout Description	46

able 37	X39, X40 Pinout Description	4/
able 38	X41, X42 Pinout Description	47
able 39	X56, X57 Pinout Description	48
able 40	X50, X51 Pinout Description	48
able 41	X43 Pinout Description	49
able 42	X52 Pinout Description	
able 43	X47 Pinout Description	50
able 44	X54 Pinout Description	51
able 45	X55 Pinout Description	51
able 46	X48 Pinout Description	52
able 47	X2 Pinout Description	52
able 48	X1 Pinout Description	53
able 49	X44 Pinout Description	53
able 50	X11 Pinout Description	54
able 51	X53 Pinout Description	
able 52	Optional X46 Pinout Description	

1 Introduction

1.1 Mini-ITX Concept

The Mini-ITX form factor provides enthusiasts and manufacturers with a standardized ultra compact platform for development. With a footprint of 170 mm x170 mm, this scalable platform promotes the design of highly integrated, energy efficient systems. Due to its small size, the Mini-ITX form factor enables PC appliance designers not only to design attractive low cost devices but also allows them to explore a huge variety of product development options - from compact space-saving designs to fully functional Information Station and Value PC systems. This helps to reduce product design cycle and encourages rapid innovation in system design, to meet the ever-changing needs of the market.

Additionally, the boards can also be passively cooled, presenting opportunities for fanless designs. The Mini-ITX boards are equipped with various interfaces such as PCI Express, SATA, USB 2.0/3.0, Ethernet, Displays and Audio.

1.2 conga-IC370

The conga-IC370 is a Single Board Computer designed based on the Thin Mini-ITX specification. The conga-IC370 features the 8th Generation Intel Core or Celeron U-Series processors. With 15 W base TDP, the SBC offers Ultra Low Power boards with high computing performance and outstanding graphics. Additionally, the SBC supports dual channel DDR4 up to 2400 MT/s for a maximum system memory capacity of 64 GB, multiple I/O interfaces, up to three independent displays and various congatec embedded features.

With smaller board size and lower height keep-out zones, the conga-IC370 SBC provides manufacturers and system designers with the opportunity to design compact systems for space restricted areas.

The various features and capabilities offered by the conga-IC370 makes it ideal for the design of compact, energy efficient, performance-oriented embedded systems.

1.2.1 Options Information

The conga-IC370 is currently available in four variants. The table below shows the different configurations available.

Table 1 conga-IC370 Variants

Part-No.	053001	053002	053003	053005
Processor	Intel® Core™ i7-8665UE	Intel® Core™ i5-8365UE	Intel® Core™ i3-8145UE	Intel® Celeron® 4305UE
	1.7 GHz Quad Core™	1.6 GHz Quad Core™	2.2 GHz Dual Core™	2.0 GHz Dual Core
Intel® Smart Cache	8 MB	6 MB	4 MB	2 MB
Max. Turbo	4.4 GHz	4.1 GHz	3.9 GHz	N.A
Frequency				
Processor Graphics	Intel® UHD Graphics 620 (GT2)	Intel® UHD Graphics 620 (GT2)	Intel® UHD Graphics 620 (GT2)	Intel® UHD Graphics 610 (GT1)
GFX Base/Max. Dynamic Freq.	0.3 / 1.15 GHz	0.3 / 1.05 GHz	0.3 / 1.0 GHz	0.3 / 1.0 GHz
DDR4 Memory	2400 MT/s dual channel	2400 MT/s dual channel	2400 MT/s dual channel	2133 MT/s dual channel
	Non-ECC	Non-ECC	Non-ECC	Non-ECC
	(up to 64 GB)			
Processor TDP	15 W	15 W	15 W	15 W
(cTDP)	(12.5/25 W)	(12.5/25 W)	(12.5/25 W)	

1.2.2 Optional Accessories

Table 2 Cooling/IO Shield

Accessories	Part No.	Description
conga-IC97/CSA	052252	12 V active cooling solution with Thin Mini-ITX height (compatible with conga-IC370)
conga-IC97/Retention Frame	052254	Retention frame for conga-IC97/CSA (compatible with conga-IC370)
conga-IC370 IO Shield - Standard Size	053060	IO shield for conga-IC370 Mini-ITX height
conga-IC370 IO Shield - Thin Size	053061	IO shield for conga-IC370 with Thin Mini-ITX height

Table 3 Cables

Cables	Part No.	Description
SATA III cable straight/straight	48000029	30 cm SATA III cable with straight-straight connectors
SATA III cable down/straight	48000030	30 cm SATA III cable with down-straight connectors
cab-ThinMini-ITX-UART	14000121	UART cable with 2 x5-pin female housing and D-Sub male connector
cab-ThinMini-ITX-USB20-Twin	14000123	USB 2.0 cable with dual USB 2.0 Type A female connector and 2 x 5-pin housing
cab-ThinMini-ITX-BKLT	14000127	30 cm backlight cable with open end
cab-DP to HDMI Passive	14000128	Passive DisplayPort to HDMI cable
cab-ThinMini-ITX-eLVDS	14000129	30 cm ACES micro-coax cable for eDP or iDP
cab-Pico-ITX-GPIO	14000151	15 cm GPIO cable with open end
cab-Pico-ITX-Feature	14000161	15 cm cable with open ends for 8-pin I2C/SMB connector
cab-LVDS SHDR-40V	14000254	50 cm, 40-pin LVDS cable with JST SHDR-40 connector and open end
cab-LVDS SHDR-40V FI-X30HL	14000256	50 cm, 40-pin LVDS cable with JST SHDR-40 and JAE FI-X30HL connectors (for AUO G170EG01 V1
		LCD panel)
cab-ThinMini-ITX-RS422	14000257	RS422 D-SUB9 adapter with 120 ohm bus termination for internal JST PHR-5 connector
cab-ThinMini-ITX-RS485	14000258	RS485 D-SUB9 adapter with 120 ohm bus termination for internal JST PHR-5 connector
cab-ThinMini-ITX-Speakers	14000259	Cable with open ends for connecting audio speakers
cab-ThinMini-ITX-Floppy to SATA Power	14000260	20 cm Delock 85248 cable for SATA power
cab-ThinMini-ITX-Buttons-Sleep&LID	14000261	cable adapter with two momentary push-buttons for sleep (yellow) and LID (green) function
USB C to internal USB 3.1	14000265	45 cm right-angle USB Type-C cable adapter for internal USB 3.1 connector
cab-ThinMini-ITX-BLKT 0511460600	14000272	50 cm backlight cable for LCD panel AUO G170EG01 V1
cab-ThinMini-ITX-Front Panel	14000273	15 cm Front panel cable adapter with buttons and LEDs
cab-ThinMini-ITX-Front Panel 100cm	14000274	100 cm front panel adapter with buttons and LEDS

Table 4 Adapters

Adapters	Part No.	Description		
conga-Thin MITX/eDP to DP adapter	052231	eDP to standard DP adapter for variants with internal DP		
conga-Thin MITX/eDP to HDMI adapter	052232	eDP to standard HDMI adapter for variants with internal DP		
conga-eDP to LVDS Adapter	052234	eDP to LVDS adapter for variants with internal DP		

Table 5 Power Supply

PSU	Part No.	Description
Power supply (90 W, 19 V @ 4.74 A)	10000146	FSP090-DIEBN2, Plug 7.4 x 5.1 x 12.5 mm

2 Specification

2.1 Feature List

Table 6 Feature Summary

Form Factor	Based on Thin Mini-ITX form factor (170 x 170 mm)						
Processor	8 th Generation Intel [®] Core™ i7,i5, i3 and Celeron Single Chip Ultra Lov	v TDP Processors					
Memory	Two memory sockets (located on the top side of the conga-IC370). Supports - SO-DIMM non-ECC DDR4 modules - Data rates up to 2400 MT/s - Maximum 64 GB capacity (32 GB each)						
congatec Board Controller	Multi-stage watchdog, non-volatile user data storage, manufacturing and board information, board statistics, hardware monitoring, fan control, I2C bus, Power loss control						
Chipset	Intel® 300 Series PCH-LP integrated in the Multi-Chip Package						
Audio	Realtek ALC888S-VD High Definition Audio						
Ethernet	2x Gigabit Ethernet via: - Intel® I219-LM for i7 and i5 variants (supports vPro/AMT) or I219-V for i3 and Celeron variants - Intel I255-V (without TSN) or optional Intel® I225-LM (with support for TSN)						
Graphic Interfaces	2x DP++ 1x LVDS/eDP						
Back Panel I/O	1x DC-IN	2x USB 3.1 Gen 2 Type-A					
Connectors	2x DisplayPort++ 1x Gigabit Ethernet 1x 2.5 Gigabit Ethernet	2x USB 2.0 Type-A 1x MIC IN 1x Line OUT					
Onboard I/O Connectors	Extension Sockets: - 1x PCle x4 - 1x Mini Card full-size or half-size (PCle x1/USB) - 1x M.2 key B, type 2280/2242/3042 (PCle x2/SATA/SIM) - 1x M.2 key E, type 2230 (PCle x1/USB/CNVi) SATA Connectors: - 2x Standard SATA 3.0/SATADOM - 1x SATA power header (12 V and 5 V) Audio - 1x Stereo speaker header - 1x DMIC header - 1x SPDIF header - 1x Front panel header (HP-Out, MIC) 1x Dual USB 2.0 front panel header 1x USB 3.1 front panel header (Type-A or Type-C)	1x LVDS connector (top-side) 1x eDP connector (bottom-side) 1x Backlight power connector 1x Monitor OFF 4x COM ports 1x Micro-SD card slot 2x GPIO headers 2x SMB/I2C connectors 1x Feature connector (3.3 V, WDG, S3, S4, S5, PWROK, BATLOW, SDP) 1x Front panel header (power and reset buttons, LEDs) 1x Sleep button and LID switch header 1x Intrusion detection header (case open) 1x Micro-SIM card slot 2x Fan connectors (CPU and system fan) 1x Mini-FIT power connector					

Optional Onboard Connectors	1x Internal DP (this option does not support DisplayPort signals on connector X25) 2x SATADOM power header CAN header
Other Features	Thermal and voltage monitoring CMOS Battery Beeper congatec standard BIOS (also possible to boot from an external BIOS flash)
BIOS	AMI Aptio® V UEFI 2.6 firmware 32 MB serial SPI flash with congatec Embedded BIOS features
Power Management	ACPI 4.0 compliant with battery support. Also supports Suspend to RAM (S3) and Intel AMT 11. Configurable TDP Ultra low standby power consumption, deep sleep.
Security	Firmware TPM 2.0 (Intel PTT) Discrete TPM 2.0 (Infineon SLB9670)

2.2 Supported Operating Systems

The conga-IC370 supports the following operating systems.

- Microsoft® Windows® 10
- Microsoft® Windows® 10 IoT Enterprise
- Linux 3.x/4.x
- Yocto
- Real Time Systems Hypervisior

The Intel® Whisky Lake SoC supports only 64-bit operating systems.

2.3 Mechanical Dimensions

The conga-IC370 has the following dimensions:

- lenght of 170 mm
- width of 170 mm
- height of 20.6 mm (16 mm top-side, 1.6 mm PCB and 3 mm bottom-side)

2.4 Supply Voltage Power

• 12-24V DC ± 5 %

2.5 Power Consumption

The power consumption values were measured using the following test setup:

- Input voltage +12V
- conga-IC370 SBC
- conga-IC370 CSA
- Microsoft Windows 10 (64 bit)

The CPU was stressed to its maximum workload with the Intel® Thermal Analysis Tool.

Table 7 Measurement Description

The power consumption values were recorded during the following system states:

System State	Description	Comment
S0: Minimum value	Lowest frequency mode (LFM) with minimum core voltage during desktop idle	
S0: Maximum value	Highest frequency mode (HFM/Turbo Boost).	The CPU was stressed to its maximum frequency
S0: Peak current	Highest current spike during the measurement of "S0: Maximum value". This state shows the peak value during runtime	Consider this value when designing the system's power supply, to ensure sufficient power is supplied during worst case scenarios
S3	SBC is powered by 12 V	
S5	SBC is powered by 12 V	

- 1. The fan and SATA drives were powered externally.
- 2. All other peripherals except the LCD monitor were disconnected before measurement.

Table 8 Power Consumption Values

The table below provides additional information about the conga-IC370 power consumption. The values are recorded at various operating mode.

Part	Memory	H.W	BIOS	OS (64 bit)	CPU				Cui	rrent (Am	p.)	
No.	Size	Rev.	Rev.		Variant	Cores	Freq. /Max. Turbo	S0: Min	S0: Max	S0: Peak	S3	S5
053001	2 x 4 GB	A.0	R000	Windows 10	Intel® Core™ i7-8665UE	4	1.7 / 4.4 GHz	TBD	TBD	TBD	TBD	TBD
053002	2 x 4 GB	A.0	R000	Windows 10	Intel® Core™ i5-8365UE	4	1.6 / 4.1 GHz	TBD	TBD	TBD	TBD	TBD
053003	2 x 4 GB	A.0	R000	Windows 10	Intel® Core™ i3-8145UE	2	2.2 / 3.9 Ghz	TBD	TBD	TBD	TBD	TBD
053005	2 x 4 GB	A.0	R000	Windows 10	Intel® Celeron® 4305UE	2	2.0 / N.A GHz	TBD	TBD	TBD	TBD	TBD

With a fast input voltage rise time, the inrush current may exceed the measured peak current.

2.6 Supply Voltage Battery Power

Table 9 CMOS Battery Power Consumption

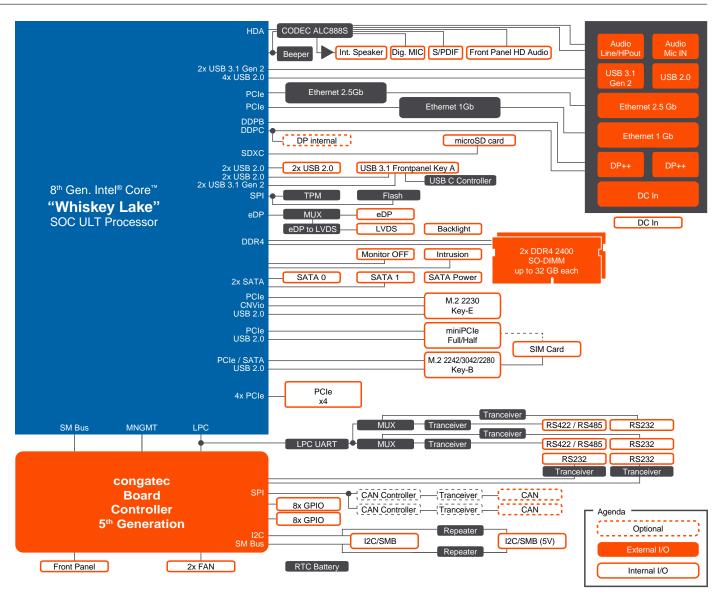
RTC @	Voltage	Current
-10°C	3V DC	TBD μA
20°C	3V DC	TBD μA
70°C	3V DC	TBD μA

- 1. Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- 2. Measure the CMOS battery power consumption in your customer specific application in worst case conditions (for example, during high temperature and high battery voltage).
- 3. Consider also the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec AG website at www.congatec.com/support/application-notes.
- 4. We recommend to always have a CMOS battery present when operating the conga-IC370

2.7 Environmental Specifications

Temperature Operation: 0° to 60°C Storage: -20° to +70°C

Humidity Operation: 10% to 90% Storage: 5% to 95%


The above operating temperatures must be strictly adhered to at all times. Humidity specifications are for non-condensing conditions.

3 Block Diagram

conga-IC370

Thin Mini-ITX Single Board Computer

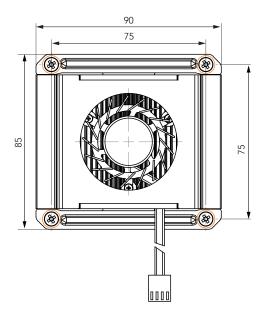
4 Cooling Solution

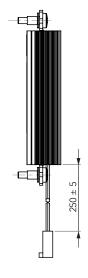
The conga-IC370 supports the cooling solutions listed in the table below. The dimensions of the cooling solutions are shown in the sub-sections. All measurements are in millimeters.

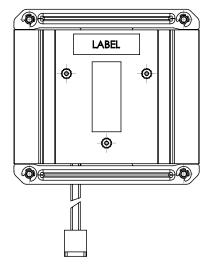
Table 10 Cooling Solution Variants

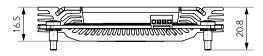
	Cooling Solution	Part No.	Description
1	congatec CSA	052252	Active cooling solution with integrated heatsink and congatec retention frame (PN: 052254)
2	Custom cooling solution	N.A	Custom cooling solution in combination with the congatec retention frame

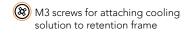
- 1. The retention frame acts as mounting backplate and board reinforcement.
- 2. We recommend a maximum torque of 0.4 Nm for SBC mounting screws and 0.5 Nm for CPU mounting screws.
- 3. With passive or custom cooling solution, the end user must make sure that adequate air flow is maintained.
- 4. The congatec conga-IC370 cooling solutions support maximum TDP of 15 W. For applications with higher TDP, you need a custom cooling solution or additional cooling components.

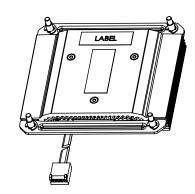


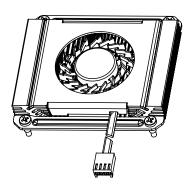

Caution

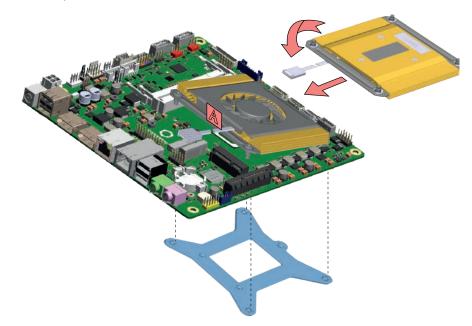

- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the SBC is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the SBC. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.
- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.
- 4. Do not exceed the recommended maximum torque. Doing so may damage the SBC.




4.1 CSA Dimensions







4.2 Assembly Instruction

Follow the instructions below to securely attach a cooling solution to the conga-IC370:

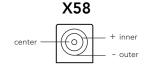
- Flip over the SBC and locate the position of the CPU.
- Place retention frame on the bottom side of the board with insulating foil facing the PCB & standoffs inserted to mounting holes in PCB. Make sure the retention frame is placed correctly, without touching surrounding components.
- Remove the protection pull tab foil from the cooling phase changer and carefully place the cooling solution. Ensure the cooling solution cable is in position A shown below.
- Slightly tighten each of the screws so that they hold the cooling solution in place. Start with one screw and then slightly tighten the other screws in a crossover pattern.
- Now you can fully tighten the screws. Once again, start with one and then continue to tighten the other screws in a crossover pattern.
- Connect the fan's power cable to the power connector.

Wrong placement of the retention frame may demage some electronic components. Before you tighten the cooling solution to the retention frame, ensure the retention frame is alligned properly.

5 Connector Description

5.1 Power Supply Connectors

The conga-IC370 provides a DC power jack and a 4-pin Mini-Fit connector. The power input is protected by a 15A non-resettable fuse.

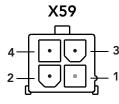

- 1. We recommend a maximum input current of 8 A.
- 2. The conga-IC370 turns on immediately power is supplied. To change this default setting, enter the BIOS setup menu under "Boot Settings Configuration" and set the "Power Loss Control" to "Remain OFF".

5.1.1 DC Power Jack (Rear I/O)

The conga-IC370 provides DC power jack X58 for connecting laptop-type DC power supply.

Table 11 X58 Pinout Description

Pin	Function	
Inner Shell	+12 - 24 V	
Outer Shell	GND	


X58: 7.4 x 5.1 mm DC power jack

5.1.2 Mini-Fit 4-Pin Connector

The conga-IC370 provides an internal 4-pin Mini-Fit connector X59 with voltage protection.

Table 12 X59 Pinout Description

Pin	Signal	Description
1	GND	Ground
2	GND	Ground
3	+12V-24V	Power supply +12-24V
4	+12V-24V	Power supply +12-24V

The conga-IC370 offers a right-angle, 4-pin Mini-Fit connector via assembly option.

Connector Type

X59: 2 x 2-pin, 4.2 mm pitch Mini-Fit connector (Molex 87427-0442)

Possible Mating Connector: Molex 39012040

5.1.3 Power Status LEDs

The conga-IC370 provides onboard LEDs D66, D69 and D70 for power state indication. In addition, you can connect a bidirectional LED to pins 2 and 4 (FP_LED+ and FP_LED-) of the front panel connector X47 for power state indication.

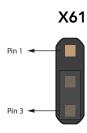
Table 13 Front Panel LED States

ACPI State	X47 (Pins 2 and 4) LED Status	Description
S0	FP_LED+ high and FP_LED- low	System on and running (bidirectional LED on with main color)
S3	FP_LED+ low and FP_LED- high	Suspend to RAM (bidirectional LED on with alternate color)
S5	FP_LED+ low and FP_LED- low	Soft-off (bidirectional LED LED off)

Table 14 Onboard LED States

ACPI State	Onboard LED	Description	
Deep S5, S5e		Steady on—deep S5 state	
•		Blinks—S5e state (congatec proprietary low-power soft-off state)	
S3, S5	D69	Soft-off, Suspend to RAM	
S0	D70	System on and running	

The front panel pinout is described in section 5.11 "Front Panel Header".

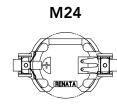


5.1.4 Power-On Control Jumper

The conga-IC370 provides jumper X61 for controlling the power-on control feature.

Table 15 Auto Power-On Control

Jumper	Configuration
1-2	Disable auto power-on control (ATX mode)
2-3	Enable auto power-on control (AT mode)


Jumper X61 has no effect if the power-on control is enabled in the BIOS setup menu.

Connector Type

X61: 1 x 3-pin, 2.5 mm pitch pin header

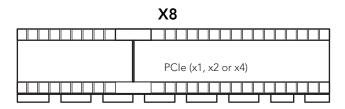
5.1.5 CMOS Battery Header

The conga-IC370 provides a CR2032 CMOS battery which is attached to battery holder M24. The battery supplies power to maintain the CMOS settings and real time clock.

Danger of explosion if battery is incorrectly replaced. Replace only with same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

5.2 Extension Sockets

The conga-IC370 provides the following extension sockets:


- PCle x4
- PCle Mini PCle Card—full or half size (PCle x1/USB)
- M.2 key B, type 3042/2280/2242 (PCIe x2/SATA/USB/SIM)
- M.2 key E, type 2230 (PCle x1/USB/CNVi)

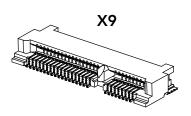
5.2.1 PCle x4 Socket

The conga-IC370 provides a PCIe x4 socket (X8) for connecting PCIe x1, x2 or x4 cards. The socket supports PCIe Gen 3 (up to 8 GT/s per lane).

Table 16 X8 Pinout Description

Pin	Signal	Pin	Signal
B1	+12V	A1	GND
B2	+12V	A2	+12V
В3	+12V	А3	+12V
B4	GND	A4	GND
B5	SMB_CLK	A5	N.C
В6	SMB_DAT	A6	N.C
В7	GND	A7	N.C
В8	+3.3V	A8	N.C
В9	N.C	A9	+3.3V
B10	+3.3V Aux	A10	+3.3V
B11	WAKE#	A11	PCIE_RST#
	Key		
B12	N.C	A12	GND
B13	GND	A13	PCIE_CLK+
B14	PCIE0_TX+	A14	PCIE_CLK-
B15	PCIE0_TX-	A15	GND
B16	GND	A16	PCIE0_RX+
B17	PRSNT2#	A17	PCIE0_RX-
B18	GND	A18	GND

PCIE1_TX+	A19	N.C
PCIE1_TX-	A20	GND
GND	A21	PCIE1_RX+
GND	A22	PCIE1_RX-
PCIE2_TX+	A23	GND
PCIE2_TX-	A24	GND
GND	A25	PCIE2_RX+
GND	A26	PCIE2_RX-
PCIE3_TX+	A27	GND
PCIE3_TX-	A28	GND
GND	A29	PCIE3_RX+
N.C	A30	PCIE3_RX-
PRSNT#2	A31	GND
GND	A32	N.C
	PCIE1_TX- GND GND PCIE2_TX+ PCIE2_TX- GND GND PCIE3_TX- GND PCIE3_TX+ PCIE3_TX- GND N.C PRSNT#2	PCIE1_TX- A20 GND A21 GND A22 PCIE2_TX+ A23 PCIE2_TX- A24 GND A25 GND A26 PCIE3_TX+ A27 PCIE3_TX- A28 GND A29 N.C A30 PRSNT#2 A31


X8: Standard PCIe x4 socket

5.2.2 PCle Mini Card Socket

The conga-IC370 provides a PCIe Mini Card socket (X9). The socket supports full or half size PCIe or USB 2.0 cards.

Table 17 X9 Pinout Description

Pin	Signal	Pin	Signal
1	WAKE#	2	+3.3 V
3	N.C	4	GND
5	N.C	6	+1.5 V
7	CLKREQ#	8	N.C ¹
9	GND	10	N.C ¹
11	REFCLK-	12	N.C ¹
13	REFCLK+	14	N.C ¹
15	GND	16	N.C
17	N.C	18	GND
19	N.C	20	W_DISABLE#

Pin	Signal	Pin	Signal
21	GND	22	PERST#
23	PERn0	24	+3.3 V
25	PERp0	26	GND
27	GND	28	+1.5V
29	GND	30	SMB_CLK
31	PETn0	32	SMB_DATA
33	РЕТр0	34	GND
35	GND	36	USB_D-
37	GND	38	USB_D+
39	+3.3 V	40	GND
41	+3.3 V	42	N.C
43	GND	44	N.C
45	N.C	46	N.C
47	N.C	48	+1.5V
49	N.C	50	GND
51	N.C	52	+3.3 V

 $^{\scriptsize 1}$ The micro-SIM card slot (X11) can optionally be connected to these pins (assembly option).

Connector Type

X9: Standard Mini Card socket (full size or half size)

5.2.3 M.2 Key B Socket

The conga-IC370 provides an M.2 key B, type 2242/2280/3042 socket (X64) for connecting SSDs or WWAN (PCIe x2, SATA or USB) cards.

Table 18 X64 Pinout Description

Pin	Signal	Pin	Signal
1	CONFIG3	2	+3.3V
3	GND	4	+3.3V
5	GND	6	FULL_CARD_PWROFF#
7	USB_D+	8	W_DISABLE_1#
9	USB_D-	10	N.C
11	GND	12	
13		14	Varia
15	V	16	Key
17	Key	18	
19		20	N.C
21	CONFIG0	22	N.C
23	N.C	24	N.C
25	N.C	26	W_DISABLE_2#
27	GND	28	N.C
29	PCle1_Rx-	30	UIM_RESET
31	PCle1_Rx+	32	UIM_CLK
33	GND	34	UIM_DATA
35	PCle1_Tx-	36	UIM_PWR
37	PCle1_Tx+	38	SATA_DEVSLP
39	GND	40	N.C
41	PCIE0_Rx-/SATA_Rx+	42	N.C
43	PCIE0_Rx+/SATA_Rx-	44	N.C
45	GND	46	N.C
47	PCIE0_Tx-/SATA_Tx-	48	N.C
49	PCIE0_Tx+/SATA_Tx+	50	PERST#
51	GND	52	CLKREQ#
53	REFCLK-	54	PEWAKE#
55	REFCLK+	56	N.C

Pin	Signal	Pin	Signal
57	GND	58	N.C
59	N.C	60	COEX3
61	N.C	62	COEX2
63	N.C	64	COEX1
65	N.C	66	N.C
67	RESET#	68	SUS_CLK
69	CONFIG1	70	+3.3 V
71	GND	72	+3.3 V
73	GND	74	+3.3 V
75	CONFIG2		

The micro-SIM card slot is connected to the UIM interface by default.

Connector Type

X64: Standard PCIe M.2 key B socket

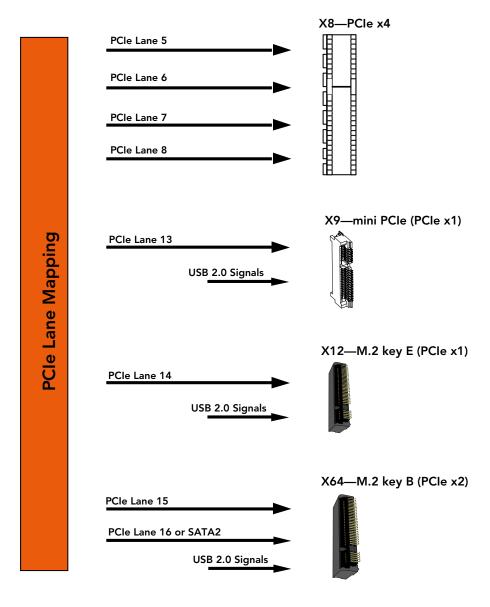
5.2.4 M.2 Key E Socket

The conga-IC370 provides an M.2 key E, type 2230 socket (X12) for connecting a PCIe, USB or Intel® CNVi WLAN card.

Table 19 X12 Pinout Description

Pin	Signal	Pin	Signal
1	GND	2	+3.3V
3	USB_D+	4	+3.3 V
5	USB_D-	6	N.C
7	GND	8	PCM_CLK
9	CNV_WR_D1-	10	PCM_SYNC
11	CNV_WR_D1+	12	PCM_IN
13	GND	14	PCM_OUT
15	CNV_WR_D0-	16	N.C
17	CNV_WR_D0+	18	GND

Pin	Signal	Pin	Signal
19	GND	20	BT_WAKE#
21	CNV_WR_CLK-	22	CNV_BRI_RSP
23	CNV_WR_CLK+	24	
25		26	 Key
27	Key	28	Key
29	Key	30	
31		32	CNV_RGI_DT
33	GND	34	CNV_RGI_RSP
35	PCle0_Tx+	36	CNV_BRI_DT
37	PCIe0_Tx-	38	CL_RST#
39	GND	40	CL_DATA
41	PCIe0_Rx+	42	CL_CLK
43	PCle0_Rx-	44	COEX3
45	GND	46	COEX2
47	REFCLK0+	48	COEX1
49	REFCLKO-	50	SUSCLK
51	GND	52	PERST#0
53	CLKREQ0#	54	BT_W_DISABLE#2
55	PEWAKE0#	56	Wifi_W_DISABLE#1
57	GND	58	N.C
59	CNV_WT_D1-	60	N.C
61	CNV_WT_D1+	62	N.C
63	GND	64	CNV_REFCLK
65	CNV_WT_D0-	66	PERST#1
67	CNV_WT_D0+	68	N.C
69	GND	70	N.C
71	CNV_WT_CLK-	72	+3.3 V
73	CNV_WT_CLK+	74	+3.3 V
75	GND		


Connector Type

X12: Standard PCIe M.2 key E socket

5.2.5 PCI Express Routing

The diagram below shows how the PCIe lanes are routed to the expansion sockets.

5.3 Display Interfaces

The conga-IC370 supports three independent displays—two DP++ and an LVDS or eDP panel. The graphic engine supports DirectX 12, OpenGL 4.5, OpenGL 2.1, Intel QuickSync and Clear Video Technology HD, hybrid graphics.

Optionally, the conga-IC370 can support iDP instead of the DP++ on X25 (assembly option) .

5.3.1 Display Port

The conga-IC370 provides two DP++ ports (X24 and X25). The ports support the following:

- VESA DisplayPort Standard 1.2
- data rate of 5.4 GT/s with four data lanes
- resolutions up to 4096 x 2304 at 60 Hz
- audio formats such as AC-3 Dolby Digital, Dolby Digital Plus, DTS-HD, LPCM, Dolby TrueHD, DTS-HD Master audio
- HDMI and DVI with appropriate adapter

The conga-IC370 supports up to 4k resolution only if you populate both memory sockets with modules of same size and speed.

Connector Type

X24, X25: Standard DisplayPort connector

5.3.2 LVDS Header

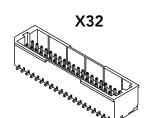
The conga-IC370 offers LVDS interface on X32. The LVDS source signals are shared with eDP interface on X27. The source signals are configured in the BIOS to support LVDS by default.

The LVDS interface is on the top side of the SBC and it supports the following:

- 18 or 24 bit, single or dual channel
- selectable panel voltage
- VESA or JEIDA data mapping
- ANSI/TIA/EIA-644-1-2001 standard

X24, X25

- automatic panel detection (EDID)
- resolution up to 1920 x 1200 at 60 Hz in dual LVDS mode


Table 20 X32 Pinout Description

Pin	Signal	Pin	Signal
1	VCC (fuse with 1.5 A hold current at 25°C)	2	VCC (fuse with 1.5 A hold current at 25°C)
3	VCC (fuse with 1.5 A hold current at 25°C)	4	VCC (fuse with 1.5 A hold current at 25°C)
5	VCC_EDID (+3.3 V)	6	GND
7	EDID_CLK	8	EDID_DATA
9	N.C	10	VDDEN
11	GND	12	GND
13	LVDS_ODD_TX0N	14	LVDS_ODD_TX1N
15	LVDS_ODD_TX0P	16	LVDS_ODD_TX1P
17	GND	18	GND
19	LVDS_ODD_TX2N	20	LVDS_ODD_CLKN
21	LVDS_ODD_TX2P	22	LVDS_ODD_CLKP
23	GND	24	GND
25	LVDS_ODD_TX3N	26	LVDS_EVEN_TX0N
27	LVDS_ODD_TX3P	28	LVDS_EVEN_TX0P
29	GND	30	GND
31	LVDS_EVEN_TX1N	32	LVDS_EVEN_TX2N
33	LVDS_EVEN_TX1P	34	LVDS_EVEN_TX2P
35	GND	36	GND
37	LVDS_EVEN_CLKN	38	LVDS_EVEN_TX3N
39	LVDS_EVEN_CLKP	40	LVDS_EVEN_TX3P

- 1. EDID signals and VDDEN output are 3.3 V.
- 2. The maximum output current for LCD and backlight power rails is 1.5 A.
- 3. Use ODD pins for single channel LVDS panel.
- 4. Use jumper X29 to set the LVDS panel voltage

X32: 40-pin, 1 mm pitch header (JST BM40B-SRDS-G-TF)

Possible Mating Connector: JST SHDR-40V-S-B

5.3.3 Embedded DisplayPort (eDP)

The conga-IC370 provides eDP interface on X27. The eDP source signals are configured in the BIOS to support LVDS by default. For eDP support, go to Advanced -> Graphics -> Active LFP Configuration submenu in the BIOS setup menu and select "eDP".

The eDP interface is on the bottom side of the SBC.

Table 21 X27 Pinout Description

Pin	Signal	Pin	Signal
1	N.C	21	VCC_LCD ¹
2	GND	22	N.C
3	eDP_TX3-	23	GND (return path for VCC_LCD)
4	eDP_TX3+	24	
5	GND	25	
6	eDP_TX2-	26	
7	eDP_TX2+	27	eDP_HPD ²
8	GND	28	GND (return path for BKLT_PWR)
9	eDP_TX1-	29	
10	eDP_TX1+	30	
11	GND	31	
12	eDP_TX0-	32	BKLT_EN ³
13	eDP_TX0+	33	BKLT_CTRL ³
14	GND	34	N.C
15	eDP_AUX+	35	N.C
16	eDP_AUX-	36	BKLT_PWR ⁴
17	GND	37	
18	VCC_LCD ¹	38	
19	VCC_LCD ¹	39	
20	VCC_LCD ¹	40	N.C

- ^{1.} Set the eDP panel voltage (3.3 V, 5 V or 12 V) with jumper X29
- ^{2.} 3.3 V input signal
- ^{3.} Set the voltage level (3.3 V or 5 V) with jumper X65
- ^{4.} Set the voltage level (5 V, 12 V or 19 V) with jumper X30

Connector Type

X27: 0.5 mm, 40-pin ACES connector

Mating connector: ACES 88441-40 or ACES 50204-40

5.3.4 Panel Voltage Selection Jumper

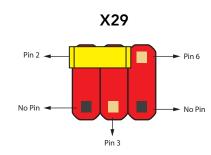

The conga-IC370 supports 3.3 V, 5 V and 12 V LCD panels. Use jumper X29 to set the LVDS or eDP panel voltage.

Table 22 X29 Pinout Description

Jumper	Panel Voltage
2-4	3.3V (default)
3-4	12V
4-6	5V

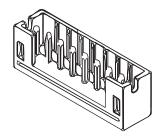
X29: 2.54 mm, 2 x 3-pin header (without pins 1 and 5)

5.3.5 Backlight Power Connector

The conga-IC370 provides backlight power connector X31. The maximum output current is 3 A.

Table 23 X31 Pinout Description

Pin	Signal Name	Description
1	BKLT_EN 1	Backlight enable
2	BKLT_CTRL ¹	Backlight control
3	BKLT_PWR ²	Backlight inverter power
4	BKLT_PWR ²	Backlight inverter power
5	GND	Backlight ground
6	GND	Backlight ground
7	BRT_UP ³	Increase flat panel brightness
8	BRT_DOWN ³	Decrease flat panel brightness


- ^{1.} Set the voltage level (3.3 V or 5 V) with jumper X65.
- ^{2.} Set the voltage level (5 V, 12 V or 19 V) with jumper X30
- ^{3.} 3.3 V input signals. Connect signals to push buttons to control the panel brightness

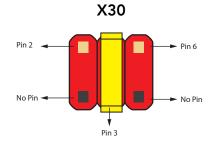
Connector Type

X31: 2 mm, 8-pin Crimp style connector (JST B8B-PH-SM4-TB)

Possible Mating Connector: JST PHR-8

X31



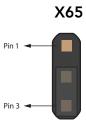

5.3.6 **Backlight Power Selection Jumper**

The conga-IC370 offers 5 V, 12 V or 19 V for LCD backlight. Use jumper X30 to select the voltage level.

Table 24 X30 Pinout Description

Jumper	Backlight Voltage
2-4	19V
3-4	12V (default)
4-6	5V

Backlight voltage of 19 V requires an input voltage of 19-24 V


X30: 2.54 mm, 3 x 2-pin header (without pins 1 and 5)

5.3.7 **Backlight Control Jumper**

The conga-IC370 supports LCD backlight control signals with 5 V or 3.3 V. Use jumper X65 to set the voltage level for pins 1 and 2 of the backlight power connector X31.

Table 25 X65 Pinout Description

Jumper	Description
1-2	3.3 V
2-3	5 V

If an LCD panel is not used, remove the jumper to reduce the power consumption.

Connector Type

X65: 2.54 mm, 1 x 3-pin header

5.3.8 Monitor OFF Header

The conga-IC370 provides monitor OFF header X28. Connect a momentary normally-open switch to X28, to switch on or switch off the backlight power of displays on LVDS or eDP connectors.

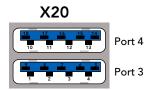
Table 26 X28 Pinout Description

Pin	Description	
1	GND	
2	MONITOR_OFF#	

Connector Type

X28: 2.54 mm pitch, 2-pin Molex 22-27-2021

5.4 USB Connectors

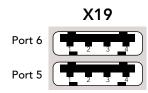

The conga-IC370 provides 10 USB ports—four on the rear connectors, three on internal headers and three for extension sockets (mini card, M.2 key B and M.2 key E).

The conga-IC370 provides four USB connectors:

- two rear connectors:
 - dual-stacked USB 3.1 Gen 2 Type-A
 - dual-stacked USB 2.0 Type-A
- two internal connectors
 - front panel header with two USB 2.0 ports
 - front panel header for USB 3.1 Type-C or Type-A port

5.4.1 Rear USB 3.1 Gen 2 Port

The conga-IC370 provides two USB 3.1 Gen 2 ports on connector X20. Each port supports a maximum current of 1 A.


X20 does not support Wake on USB by default (requires assembly option)

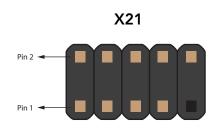
Connector Type

X20: Dual-stacked USB 3.1 Gen 2 Type-A connector

5.4.2 Rear USB 2.0 Port

The conga-IC370 provides two USB 2.0 ports on connector X19. Each port supports a maximum current of 1 A.

Connector Type

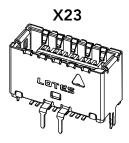

X19: Dual-stacked USB 2.0 Type-A connector

5.4.3 Internal USB 2.0 Port

The conga-IC370 provides a USB 2.0 front panel header X21. The header supports two USB 2.0 ports. Each port supports a maximum current of 1 A.

Table 27 X21 Pinout Description

USB Port 7		USB Port 8			
Pin	Signal	Description	Pin	Signal	Description
1	+5V	+5V supply	2	+5V	+5V supply
3	USB7-	USB Port 7, Data-	4	USB8-	USB Port 8, Data-
5	USB7+	USB Port 7, Data+	6	USB8+	USB Port 8, Data+
7	GND	Ground	8	GND	Ground
9	No Pin	Empty	10	N.C	Not Connected



X21: 2.54 mm, 2 x 5-pin header

5.4.4 Internal USB 3.1 Gen 2 Port

The conga-IC370 provides a USB 3.1 front panel connector X23. The connector supports a USB 3.1 Type-C or Type-A port with appropriate cable adapter. The port supports a maximum current of 3 A in runtime mode and 1.5 A in suspend or standby mode.

- 1. For USB 3.1 Gen 2 speed (10 Gbps), use internal USB cables of 50 cm or less.
- 2. X23 supports only 5 V power source for USB 3.1 Type-C

Connector Type

X23: 20-pin USB3.1 Internal Front Panel, Key-A

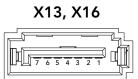
5.5 SATA Connectors

The conga-IC370 provides two standard SATA 3.0 ports, an M.2 key B socket and a SATA power header.

5.5.1 Standard SATA Port

The conga-IC370 provides two standard SATA 3.0 ports (X13 and X16). The port supports:

- SATA Gen 3 Specification with up to 6 Gb/s
- SATA or SATADOM with appropriate cable
- pin 7 power source for SATADOMs (disabled in the BIOS setup menu by default)
- pin 8 power source for SATADOMs


To show SATA port activity, connect an LED to pin 1 and 3 of the front panel connector X47.

- 1. Enable pin 7 power source in the BIOS setup menu under "Chipset -> Platform Controller Hub -> SATA and RST Configuration -> SATADOM Power Pin 7" and select "SATADOM".
- 2. To use pin 8 power source or a standard SATA HDD/SSD, disable pin 7 power source in the BIOS setup menu under "Chipset -> Platform Controller Hub -> SATA and RST Configuration -> SATADOM Power Pin 7" and select "SATA SSD/HDD".

Connector Type

X13, X16: Standard SATA connector

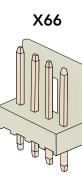
5.5.2 M.2 Key B Socket

The conga-IC370 provides an M.2 key B, Type 2242/2280 socket (X64) for connecting SATA SSD cards. Refer to section 5.2.3 "M.2 Key B Socket" for X64 pinout description.

5.5.3 SATA Power Header

The conga-IC370 provides a 4-pin SATA power connector (X66) for 2.5" HDD or SSD. The header supplies 5 V or 12 V with a maximum current of 1.5 A.

Table 28 X66 Pinout Description.


Pin	Signal
1	5V (maximum 1.5A)
2	GND
3	GND
4	12 V (maximum 1.5 A)

X66: 2.5 mm pitch, 4-pin header (TE 171825-4) Possible Mating Connector: TE 171822-4

5.5.4 Optional SATADOM Power Connector

The conga-IC370 offers two optional connectors with 5 V (assembly option) for SATADOM devices that do not support SATADOM pin 7 or pin 8 power technology.

5.6 Ethernet

The conga-IC370 provides one gigabit Ethernet (X5) and one 2.5 Gb Ethernet (X6). X5 interface is equipped with Intel i219-LM controller and supports Intel vPro/AMT technology. X6 interface is equipped with Intel i225-LM controller by default but can be equipped with Intel i255-V by assembly option.

The built-in LEDs indicate the status of the LAN.

Table 29 X5 LED Description

LED	Color	Description	
Left LED	Off	10 Mbps link speed	
	Green	100 Mbps link speed	
	Orange	1 Gbps link speed	
Right LED	Off	No link	
	Steady on	Link established, no activity detected	
Blinking Link established, activity detected		Link established, activity detected	

Table 30 X6 LED Description

LED	Color	Description	
Left LED	Off	No link	
	Steady on	Link established, no activity detected	
	Blinking	Link established, activity detected	
Left LED	Off	10 Mbps or 100 Mbps link speed	
	Green	1 Gbps link speed	
	Orange	2.5 Gbps link speed	

- 1. X5 interface supports Intel vPro/AMT technology and IEEE 1588
- 2. X6 interface supports TSN

Connector Type

X5: 8-pin RJ45 connector with gigabit magnetic and LEDs

X6: 8-pin RJ45 connector with 2.5 Gb magnetic and LEDs

X5/X6

5.7 Audio Connectors

The conga-IC370 features a high definition audio codec (Realtek ALC888S). The signals are routed to internal and rear audio connectors. The rear connectors are Line-OUT and Mic-IN. The internal connectors are stereo speaker, digital microphone, SPDIF and front Panel HD audio.

The driver for the codec is available on congatec website at www.congatec.com.

5.7.1 Rear Audio

The conga-IC370 provides MIC-IN (X33) and line-OUT (X34) connectors.

Table 31 X33 Pinout Description

Pin	Jack	Signal	Description
1	Tip	MIC1_L	Microphone - left channel
2	Ring	MIC1_R	Microphone - right channel
3	Sleeve	A_GND	Analog ground

Table 32 X34 Pinout Description

Pin	Jack	Signal	Description
1	Tip	LINE_L	Line-OUT - left channel
2	Ring	LINE_R	Line-OUT - right channel
3	Sleeve	A_GND	Analog ground

X33, X34: 3-pin, 3.5 mm single audio jack

X33

MIC-IN Jack

X34

Line-Out Jack

5.7.2 Internal Audio

The conga-IC370 provides the stereo speaker, digital microphone, SPDIF and front panel HD audio connectors internally.

5.7.2.1 Stereo Speaker Header

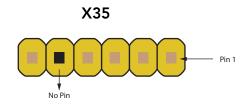
The conga-IC370 provides stereo speaker header X38. Each audio channel offers a maximum wattage of 6 W into 4 ohms. You can connect 4 ohm or 8 ohm stereo speakers to X38.

Table 33 X38 Pinout Description

Pin	Signal	Description	
1	FRONT_L-	Analog front left (negative terminal)	
2	FRONT_L+	Analog front left (positive terminal)	
3	FRONT_R+	Analog front right (positive terminal)	
4	FRONT_R-	Analog front right (negative terminal)	

Connector Type

X38: 2 mm, 4-pin crimp style connector


Mating connector: JST PHR-4 or Chyao Shiunn JS-1124-04

5.7.2.2 Digital Microphone Header

The conga-IC370 provides a digital microphone (DMIC) header X35. The maximum power budget is 500 mA.

Table 34 X35 Pinout Description

Pin	Signal	Description
1	+3.3V	3.3 V supply
2	DMIC_DATA	Serial data from digital MIC (3.3 V signal level)
3	GND	Ground
4	DMIC_CLK	Digital MIC serial clock (3.3 V signal level)
5	KEY	No pin
6	N.C	Not connected

X35: 2.54 mm, 1x 6-pin header (without pin 5)

5.7.2.3 S/PDIF Header

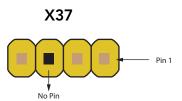
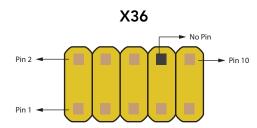

The conga-IC370 provides an S/PDIF output header X37.

Table 35 X37 Pinout Description

Pin	Signal	Description
1	GND	Ground
2	SPDIFOUT	S/PDIF output (3.3 V)
3	KEY	No pin
4	+5 V	+5 V supply

X37: 2.54 mm, 1x 4-pin header (without pin 3)



5.7.2.4 Front Panel Header

The conga-IC370 provides a front panel header X36. The header support line or headphone output, and microphone input.

Table 36 X36 Pinout Description

Pin	Signal	Description
1	MIC2_L	2nd analog stereo microphone input—left channel
2	A_GND	Analog ground
3	MIC2_R	2nd analog stereo microphone input—right channel
4	PRESENCE#	Active low signal that indicates that an Intel HD Audio dongle is connected to the analog header.
5	LINE2_R	2nd analog line output—right channel (headphone)
6	MIC2_JD	Microphone jack detection path to A_GND
7	SENSE	Jack detection path to HDA codec for MIC2 and LINE2
8	KEY	No pin
9	LINE2_L	2nd analog line output—left channel (headphone)
10	LINE2_JD	Line output jack detection path to A_GND

X36: 2.54 mm, 2x 5-pin header (without pin 8)

5.8 COM Port Headers

The conga-IC370 provides four COM ports—two ports (COM 1, COM 2) from LPC to UART brigde and two ports (COM 3, COM 4) from the congatec board controller (cBC).

5.8.1 COM 1 and 2 (RS232/RS422/RS484)

The LPC to UART bridge on the conga-IC370 provides two COM ports—COM 1 and COM 2. COM port 1 provides RS232 COM port on pin header X39 or RS422/RS484 COM port on pin header X41. COM port 2 provides RS232 COM port on pin header X40 or RS422/484 COM port on pin header X42.

Use the BIOS setup menu to select the serial communication standard (RS232, RS422 or RS484) for each COM port. The RS485 mode has Tx output control and Rx echo cancellation.

Table 37 X39, X40 Pinout Description

Pin	Signal	Description	Pin	Signal	Description
1	DCD	Data Carrier Detect	2	RXD	Received Data
3	TXD	Transmit Data	4	DTR	Data Terminal Ready
5	GND	Ground	6	DSR	Data Set Ready
7	RTS	Request to Send	8	CTS	Clear to Send
9	RI	Ring Indicator	10	N.C	Not connected

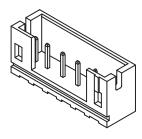
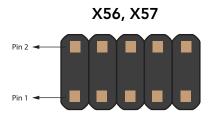



Table 38 X41, X42 Pinout Description

Pin	Signal	Description
1	TX-	Transmit data -
2	TX+	Transmit data +
3	RX-	Receive data -
4	RX+	Receive data +
5	GND	Ground

- 1. If 120 ohm bus termination is required, add a termination resistor to the cable or cable adapter.
- 2. For 2-wire RS485 (X41 and X42), externally connect pin 1 to pin 2 and pin 2 to pin 4.

X39, X40: 2.54 mm, 2 x 5-pin headers


X41, X42: 2 mm, 5-pin JST B5B-PH-SM4-TB connector; Possible Mating Connector: JST PHR-5

5.8.2 COM 3 and 4 (RS232)

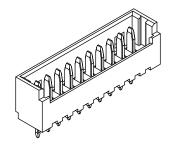
The conga-IC370 provides RS232 COM 3 on pin header X56 and RS232 COM 4 on pin header X57.

Table 39 X56, X57 Pinout Description

Pin	Signal	Description	Pin	Signal	Description
1	N.C	Not connected	2	RXD	Received Data
3	TXD	Transmit Data	4	N.C	Not connected
5	GND	Ground	6	N.C	Not connected
7	RTS	Request to Send	8	CTS	Clear to Send
9	N.C	Not connected	10	N.C	Not connected

X56, X57: 2.54 mm, 2 x 5-pin headers

5.9 GPIO Header


The conga-IC370 provides GPIO headers X50 and X51. The GPIOs are sourced from the board controller. Each header offers eight GPIO signals and 3.3 V provided through a 500 mA resetable fuse.

The GPIO signals have 3.3 V level with internal 10 k Ω board controller pull-up resistors.

Table 40 X50, X51 Pinout Description

Pin	X50	X51	Description
1	GPIO_0	GPIO_8	General Purpose Input Output 0 or 8
2	GPIO_1	GPIO_9	General Purpose Input Output 1 or 9
3	GPIO_2	GPIO_10	General Purpose Input Output 2 or 10
4	GPIO_3	GPIO_11	General Purpose Input Output 3 or 11
5	GND	GND	Ground
6	GPIO_4	GPIO_12	General Purpose Input Output 4 or 12

7	GPIO_5	GPIO_13	General Purpose Input Output 5 or 13
8	GPIO_6	GPIO_14	General Purpose Input Output 6 or 14
9	GPIO_7	GPIO_15	General Purpose Input Output 7 or 15
10	+ 3.3 V	+ 3.3 V	3.3 V supply (standby)

Connector Type

X50, X51: 10-pin, 1.25 mm pitch picoblade header (Molex 530471010)

Possible Mating Connector: Molex 0510211000

5.10 I²C Bus/SM Bus Header

The conga-IC370 provides two pin headers (X43 and X52) for I²C/SM bus signals. Pin header X43 supports 5 V signal level while pin header X52 supports 3.3 V signal level.

Table 41 X43 Pinout Description

Pin	Signal	Voltage Level	Description
1	I2C_DAT	5 V	I2C data
2	GND		Ground reference
3	I2C_CLK	5 V	I2C clock output
4	+ 5 V		+5 V runtime power output with 500 mA fuse
5	SMB0_DAT	5 V	SMBus data
6	GND		Ground reference
7	SMB0_CLK	5 V	SMBus clock output
8	+5 V		+5 V runtime power output with 500 mA fuse

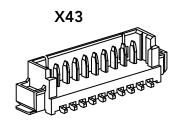
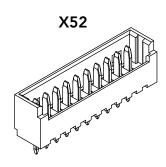



Table 42 X52 Pinout Description

Pin	Signal	Voltage Level	Description
1	PM_THRM#		Thermal event from external sensor (should be driven by open drain/collector output)
2	I2C_DAT	3.3 V	I2C data
3	GND		Ground reference
4	I2C_CLK	3.3 V	I2C clock output
5	+3.3 V ¹		+3.3 V standby power output with 500 mA fuse
6	SMB0_ALERT#		SM bus alert signal from external device (should be driven by open drain/collector output)
7	SMB0_DAT	3.3 V	SMBus data

8	GND		Ground reference
9	SMB0_CLK	3.3 V	SMBus clock output
10	+ 3.3 V ²		+3.3 V standby power (deep) output with 500 mA

- ^{1.} Recommended for I2C devices.
- ^{2.} Recommended for SM bus devices.

Connector Type

X43: 8-pin, 1.25 mm pitch picoblade header (Molex 0533981071)

X52: 10-pin, 1.25 mm pitch picoblade header (Molex 530471010)

Possible Mating Connector: Molex 510211000

5.11 Front Panel Header

The conga-IC370 provides pin header X47 for front panel features such as reset and power buttons, power state bidirectional LED and SATA LED. Pins 2 and 4 indicate the conga-IC370 power states. For LED status description, see section 5.1.3 "Power Status LEDs".

Table 43 X47 Pinout Description

Pin	Signal	Description
1	HDD_LED+	SATA activity LED (anode) driven by 5 V with 470 ohm resistor
2	FP_LED+	Power LED (anode for main color, cathode for alternate color) driven by 3.3 V with 330 ohm resistor
3	HDD_LED-	SATA activity LED (cathode) driven by 5 V with 470 ohm resistor
4	FP_LED-	Power LED (cathode for main color, anode for alternate color) driven by 3.3 V with 330 ohm resistor
5	GND	Ground
6	PWRBTN#	Power Button
7	SYS_RST#	Reset Button
8	GND	Ground
9	+5 V	+5 V runtime power supply (500 mA power budget)
10	KEY	No pin

X47: 2.54 mm,10-pin header (without pin 10)

5.12 CPU and System Fan Header

The conga-IC370 provides pin header X54 for connecting CPU fan and pin header X55 for connecting system fan. The headers support 3-pin or 4-pin 12V fan. The recommended maximum power rating for the fan is 4W.

Table 44 X54 Pinout Description

Pin	Signal
1	GND
2	+12 VDC (maximum 500 mA)
3	CPU_FAN_TACHOIN
4	CPU_FAN_CTRL

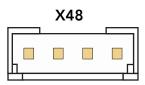
Table 45 X55 Pinout Description

Pin	Signal
1	GND
2	+12 VDC (maximum 500 mA)
3	AUX_FAN_TACHOIN
4	AUX_FAN_CTRL

- 1. The connector and pinout complies with 4-Wire Pulse PWM Controlled Fans Specification, Revision 1.3
- 2. FAN_TACHOIN fan output shall provide two pulses per revolution.
- 3. The fan must pull-up the FAN_CTRL signal to high logic level

Connector Type

X54, X55: 2.54 mm, 4-pin header



5.13 Sleep and Lid Button Header

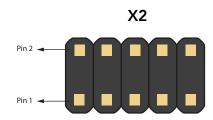
The conga-IC370 provides pin header X48 for sleep button and lid switch functionality.

Table 46 X48 Pinout Description

Pin	Signal	Description
1	LID_BTN#	Lid button (active low, triggers sleep state or wake up from sleep). Connect directly to LID switch, active low
2	GND	Ground
3	SLP_BTN#	Sleep button (active low, triggers sleep state). Connect directly to sleep button, active low
4	GND	Ground

Connector Type

X48: 2.54 mm,1 x 4-pin header (Molex 530470410)


Mating Connector: Molex 510210400

5.14 External BIOS Flash

With pin header X2, the conga-IC370 can boot from an external 3.3 V SPI flash. For external BIOS flash, you need a PCB adapter (with an SPI flash) that connects to X2. For more information, contact congatec support.

Table 47 X2 Pinout Description

Pin	Signal	Description	Pin	Signal	Description
1	SPI_CS0#	SPI flash CS# pin	2	VDD	Power supply (3.3 V)
3	SPI_IO1	SPI flash MISO pin	4	SPI_IO3	SP flash HOLD# pin
5	SPI_IO2	SPI flash WP# pin	6	SPI_CLK	SPI flash clock input
7	GND	Ground	8	SPI_IO0	SPI flash MOSI pin
9	BIOS_EXT#	Enable booting from external SPI flash (active low)	10	SER1_TX	Serial port debug output from cBC

Connector Type

X2: 1.27 mm, 2 x 5-pin header

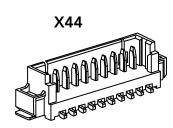
5.15 Chassis Intrusion Connector


The conga-IC370 provides pin header X1 for chassis intrusion detection. Connect normally-open switch to X1.

Table 48 X1 Pinout Description

Pin	Function
1	GND
2	INTRUDER#

X1: 2.54 mm, 2-pin connector (Molex 22-27-2021)



5.16 Feature Header

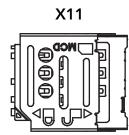
The conga-IC370 provides pin header X44 for various functions.

Table 49 X44 Pinout Description

Pin	Signal	Pin Type	Voltage Level	Termination	Description
1	N.C				Not connected (assembly option for PWROK input signal)
2	BATLOW#	Input	3.3 V standby	PU 10 k	Battery low (active low; indicates low external battery) Use open drain configuration on external device
3	SDP	Output			SDP output from Intel I225 controller (for time synchronization (IEEE 1588))
4	WDTRIG	Input	3.3 V	PU 10 k	Watchdog trigger input (board controller), timer reset, active low. Use open drain configuration on external device
5	GND				Ground
6	SLP_S3#	Output	3.3 V standby		S3 sleep control (suspend to RAM), active low
7	SLP_S4#	Output	3.3 V standby		S4 sleep control (suspend to Disk), active low
8	SLP_S5#	Output	3.3 V standby		S5 sleep control (Soft Off), active low
9	WDOUT	Output	3.3 V	PD 100 k	Watchdog output event (board controller)
10	3.3 V	Power			3.3 V standby power output (500 mA max)

X44: 10-pin, 1.25 mm pitch picoblade header (Molex 0533981071)

Possible Mating Connector: Molex 510211000


6 Additional Features

6.1 Micro-SIM Card

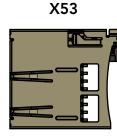
The conga-IC370 offers a top-entry micro-SIM slot X11 for inserting SIM card.

Table 50 X11 Pinout Description

Pin	Signal	Description
C1	PWR	Power
C2	RST	Reset
C3	CLK	Clock
C4	N.A	Not available
C5	GND	Ground
C6	N.C	Not connected
C7	1/0	Data
C8	N.A	Not available

- 1. The micro-SIM card slot is connected to M.2 key B socket X64 by default.
- 2. The slot can optionally be routed to mini card socket X9 (assembly option).

Connector Type


X11: Micro-SIM card socket

6.2 Micro-SD Card

The conga-IC370 offers a micro-SD slot on X53. The SD card slot complies with SDXC card specification 3.01 with support for up to 104 MBps data rate. The slot is located at the bottom-side.

Table 51 X53 Pinout Description

Pin	Signal	Description
1	SD_D2	Data line (bit 2)
2	SD_D3	Data line (bit 3)
3	SD_CMD	Command response
4	+3.3V	Supply voltage
5	SD_CLK	Serial clock
6	GND	Ground
7	SD_D0	Data line (bit 0)
8	SD_D1	Data line (bit 1)

X53: Micro-SD card slot

6.3 Security Features

The conga-IC370 features a firmware TPM (Intel PTT TPM 2.0) as well as a discrete Infineon SLB9670 TPM 2.0.

To use the discrete TPM module, disable the firmware TPM (fTPM) in the Advanced -> Platform Trust Technology -> fTPM BIOS setup submenu.

6.4 Beeper

The onboard magnetic buzzer M22 provides audible error code (beep code) information during POST.

6.5 Optional CAN Header

The conga-IC370 offers an assembly option for up to two CAN buses (X46). For more information, contact congatec technical support team.

Table 52 Optional X46 Pinout Description

Pin	Signal	Description
1	CAN2_L	CAN2 dominant low
2	GND	Ground
3	CAN2_H	CAN2 dominant high
4	12V_CAN1	12 V runtime power with 500 mA fuse (first CAN bus)
5	12V_CAN2	12 V runtime power with 500 mA fuse (second CAN bus)
6	CAN1_H	CAN1 dominant high
7	GND	Ground
8	CAN1_L	CAN1 dominant low

X46: 2.54 mm, 8-pin (4 x 2 rows) header

6.6 congatec Board Controller (cBC)

The conga-IC370 is equipped with a Microchip MEC1705 microcontroller. This onboard microcontroller plays an important role for most of the congatec BIOS features. It fully isolates some of the embedded features such as system monitoring, I²C bus from the x86 core architecture. The isolation helps improve performance and reliability even when the x86 processor is in a low power mode.

6.6.1 Fan Control

The cBC uses the PWM (FAN_PWMOUT) signal to adjust the rotational speed of the fan without changing the fan's input voltage. Additionally, the FAN_TACHOIN signal provides the ability to monitor the system's fan RPMs (revolutions per minute). For accurate RPM reading, the FAN_TACHOIN signal must receive two pulses per revolution. Therefore, a two pulse per revolution fan or similar hardware solution is recommended.

6.6.2 Power Loss Control

The cBC has full control of the power-up of the SBC; therefore, it can be used to specify the behavior of the system after an AC power loss condition. Supported modes are "Always On", "Remain Off" and "Last State".

6.6.3 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions. It also keeps track of dynamically changing data like runtime meter and boot counter.

6.7 OEM BIOS Customization

The conga-IC370 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customization features supported are described below:

6.7.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_OEM_Default_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

6.7.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN11_Create_And_Add_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.

6.7.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace or add the OEM POST logo.

6.7.4 OEM BIOS Code/Data

With the congatec embedded BIOS, system designers can add their code to the BIOS POST process. The congatec Embedded BIOS first calls the OEM code before handing over control to the OS loader. Except for custom specific code, this feature can also be used to support verb tables for HDA codecs, PCI/PCIe OpROMs, bootloaders and rare graphic modes.

The OEM BIOS code of the new UEFI based firmware is called only when the CSM (Compatibility Support Module) is enabled in the BIOS setup menu. Contact congatec technical support for more information on how to add OEM code.

6.7.5 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OEM DXE driver.

6.8 congatec Battery Management Interface

To facilitate the development of battery powered mobile systems based on embedded modules, congated AG defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congated Battery Management Interface Specification can provide the battery management functions supported by an ACPI-capable operating system (for example, charge state of the battery, information about the battery, alarms or events for certain battery states) without the need for additional modifications to the system BIOS.

In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-IC370 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I2C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system.

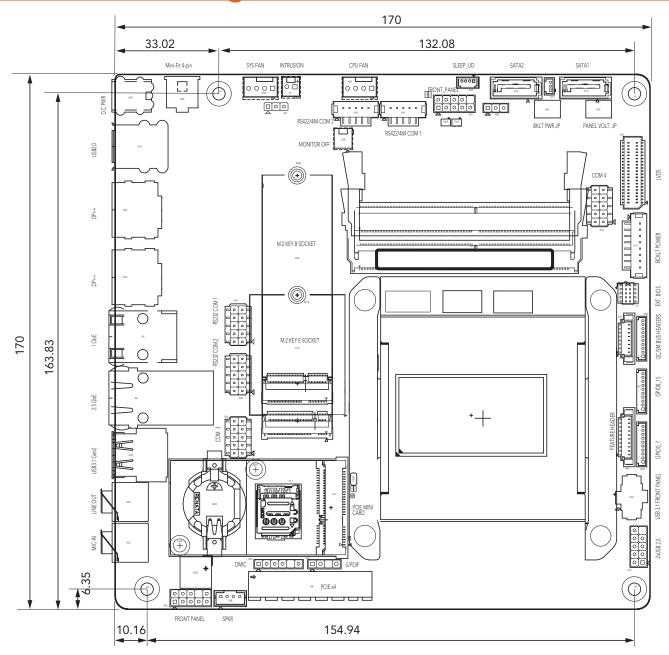
For more information about this subject visit the congatec website and view the following documents:

- congatec Battery Management Interface Specification
- Battery System Design Guide
- conga-SBM³ User's Guide

6.9 API Support (CGOS)

In order to benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win32, Win64, Win CE, Linux. The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, available on the congatec website.

6.10 Thermal and Voltage Monitoring


The cBC monitors the ambient temperature, input voltage and input current of the conga-IC370. The sensors in the CPU monitor the CPU temperature.

6.11 External System Wake Event

The conga-IC370 supports LAN, USB, power,lid, sleep buttons and PCIe driven wake-up events.

7 Mechanical Drawing

8 BIOS Setup Description

The BIOS setup description of the conga-IC370 can be viewed without having access to the module. However, access to the restricted area of the congatec website is required in order to download the necessary tool (CgMlfViewer) and Menu Layout File (MLF).

The MLF contains the BIOS setup description of a particular BIOS revision. The MLF can be viewed with the CgMlfViewer tool. This tool offers a search function to quickly check for supported BIOS features. It also shows where each feature can be found in the BIOS setup menu.

For more information, read the application note "AN42 - BIOS Setup Description" available at www.congatec.com.

If you do not have access to the restricted area of the congatec website, contact your local congatec sales representative.

8.1 Navigating the BIOS Setup Menu

The BIOS setup menu shows the features and options supported in the congatec BIOS. To access and navigate the BIOS setup menu, press the or <F2> key during POST. The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

8.2 BIOS Versions

The BIOS displays the BIOS project name and the revision code during POST, and on the main setup screen. The initial production BIOS for conga-IC370 is identified as IVWLR1xx or IUWLR1xx, where:

- R is the identifier for a BIOS ROM file,
- 1 is the so called feature number and
- xx is the major and minor revision number.

The binary size for IVWL and IUWL is 32 MB.

8.3 Updating the BIOS

BIOS updates are recommeded to correct platform issues or enhance the feature set of the module. The conga-IC370 features a congatec/AMI AptioEFI firmware on an onboard flash ROM chip. You can update the firmware with the congatec System Utility. The utility has five versions—UEFI shell, DOS based command line¹, Win32 command line, Win32 GUI, and Linux version.

For more information about "Updating the BIOS" refer to the user's guide for the congatec System Utility "CGUTLm1x.pdf" on the congatec website at www.congatec.com.

1. Deprecated

Caution

The DOS command line tool is not officially supported by congatec and therefore not recommended for critical tasks such as firmware updates. We recommend to use only the UEFI shell for critical updates.

8.4 Supported Flash Devices

The conga-IC370 supports:

• Winbond W25Q256JVEIQ (32 MB)

• GigaDevice GD25B256DYIG (32 MB)

The flash devices above can be used to support external BIOS. For more information about external BIOS support, refer to the Application Note "AN7_External_BIOS_Update.pdf" on the congatec website at http://www.congatec.com.

