EPIC SBC supports AMD® 28nm low power on-board SoC with VGA/HDMI/LVDS, Dual PCIe GbE, USB 3.0, Dual PCIe Mini, SATA 6Gb/s, mSATA, COM and Audio, iRIS-1010 and RoHS # **User Manual** # Revision | Date | Version | Changes | |--------------------|---------|---| | 28 August, 2018 | 1.02 | Updated Section 1.7: Technical Specifications | | 26 September, 2017 | 1.01 | Updated Section 4.4.3: LVDS Voltage Selection | | 23 January, 2015 | 1.00 | Initial release | # Copyright #### **COPYRIGHT NOTICE** The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer. In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages. This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer. #### **TRADEMARKS** All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners. # **Manual Conventions** #### **WARNING** Warnings appear where overlooked details may cause damage to the equipment or result in personal injury. Warnings should be taken seriously. #### **CAUTION** Cautionary messages should be heeded to help reduce the chance of losing data or damaging the product. #### **NOTE** These messages inform the reader of essential but non-critical information. These messages should be read carefully as any directions or instructions contained therein can help avoid making mistakes. #### **HOT SURFACE** This symbol indicates a hot surface that should not be touched without taking care. # **Table of Contents** | 1 INTRODUCTION | | |---|----| | 1.1 Introduction | 2 | | 1.2 Model Variations | | | 1.3 FEATURES | 3 | | 1.4 Connectors | 4 | | 1.5 DIMENSIONS | 5 | | 1.6 Data Flow | 6 | | 1.7 TECHNICAL SPECIFICATIONS | 7 | | 2 UNPACKING | | | 2.1 Anti-static Precautions | 11 | | 2.2 Unpacking Precautions | 11 | | 2.3 PACKING LIST | | | 2.4 Optional Items | | | 3 CONNECTORS | | | 3.1 Peripheral Interface Connectors | | | 3.1.1 NANO-SE-i1/KBN-i1/GLX Layout | | | 3.1.2 Peripheral Interface Connectors | | | 3.1.3 External Interface Panel Connectors | | | 3.2 Internal Peripheral Connectors | | | 3.2.1 12V DC-IN Power Connector | | | 3.2.2 Audio Connector | | | 3.2.3 Battery Connector | 19 | | 3.2.4 Brightness button connector | 20 | | 3.2.5 Chassis Intrusion Connector | | | 3.2.6 DDR3 SO-DIMM Slot | 22 | | 3.2.7 Digital I/O Connector | 22 | | 3.2.8 Front Panel Connector | 23 | | 3.2.9 IPMI LED Connector | 24 | | 3.2.10 iRIS-1010 module slot | 25 | | 3.2.11 Keyboard and Mouse Connector | 26 | |---|----| | 3.2.12 LAN LED Connectors | 27 | | 3.2.13 LVDS Backlight Inverter Connector | 27 | | 3.2.14 LVDS LCD Connector | | | 3.2.15 LVDS LED connector | 29 | | 3.2.16 PCIe Mini Card Slot | | | 3.2.17 Power Button Connector | | | 3.2.18 Reset Button Connector | 32 | | 3.2.19 RS-232 Serial Port Connector | 32 | | 3.2.20 RS-422/485 Serial Port Connector | 33 | | 3.2.21 SATA 6Gb/s Drive Connector | | | 3.2.22 SATA Power Connector | | | 3.2.23 SMBUS Connector | 36 | | 3.2.24 SPDIF Connector | 37 | | 3.2.25 SPI Flash Connector (BIOS) | | | 3.2.26 SPI Flash Connector (EC) | | | 3.2.27 System Fan Connector | | | 3.2.28 TPM Connector | 40 | | 3.2.29 USB Connector | 41 | | 3.3 External Peripheral Interface Connector Panel | 42 | | 3.3.1 HDMI Connector | | | 3.3.2 LAN Connectors | | | 3.3.3 USB Connectors | 44 | | 3.3.4 VGA Connector | | | 4 INSTALLATION | 47 | | 4.1 Anti-static Precautions | 48 | | 4.2 Installation Considerations | 48 | | 4.3 SO-DIMM Installation | 50 | | 4.4 System Configuration | 51 | | 4.4.1 AT/ATX Mode Select Switch | 51 | | 4.4.1 Clear CMOS Button | 52 | | 4.4.2 LVDS Panel Resolution Selection | 52 | | 4.4.3 LVDS Voltage Selection | 54 | | 4.5 Internal Peripheral Device Connections | 55 | | | 4.5.1 Audio Kit Installation | 55 | |---|--|------| | | 4.5.2 SATA Drive Connection | . 56 | | | 4.5.3 Single RS-232 Cable | . 57 | | | 4.6 External Peripheral Interface Connection | . 58 | | | 4.6.1 HDMI Display Device Connection | . 59 | | | 4.6.2 LAN Connection | . 59 | | | 4.6.3 USB Connection | . 60 | | | 4.6.4 VGA Monitor Connection | . 61 | | | 4.7 HEAT SINK ENCLOSURE | . 62 | | | 4.8 Driver Download | . 63 | | 5 | BIOS | . 65 | | | 5.1 Introduction | . 66 | | | 5.1.1 Starting Setup | . 66 | | | 5.1.2 Using Setup | . 66 | | | 5.1.3 Getting Help | . 67 | | | 5.1.4 Unable to Reboot after Configuration Changes | . 67 | | | 5.1.5 BIOS Menu Bar | . 67 | | | 5.2 MAIN | . 68 | | | 5.3 ADVANCED | . 69 | | | 5.3.1 ACPI Settings | . 70 | | | 5.3.2 Trusted Computing | . 71 | | | 5.3.3 RTC Wake Settings | . 72 | | | 5.3.4 CPU Configuration | . 73 | | | 5.3.5 IDE Configuration | . 74 | | | 5.3.6 USB Configuration | . 75 | | | 5.3.7 F81866 Super IO Configuration | . 76 | | | 5.3.7.1 Serial Port n Configuration | . 77 | | | 5.3.8 F81866 H/W Monitor | . 82 | | | 5.3.8.1 Smart Fan Mode Configuration | . 83 | | | 5.3.9 Serial Port Console Redirection | . 85 | | | 5.3.9.1 Console Redirection Settings | . 86 | | | 5.4 Chipset | . 88 | | | 5.4.1 South Bridge Configuration | . 89 | | | 5.4.2 North Bridge Configuration | . 90 | | 5.5 Boot | | |-----------------------------------|-----| | 5.6 Security | 93 | | 5.7 Exit | 93 | | 5.8 Server Mgmt | 95 | | 5.8.1.1 System Event Log | 96 | | 5.8.1.2 BMC network configuration | 97 | | A REGULATORY COMPLIANCE | 98 | | B PRODUCT DISPOSAL | 100 | | C BIOS MENU OPTIONS | 102 | | D TERMINOLOGY | 105 | | E WATCHDOG TIMER | 110 | | F HAZARDOUS MATERIALS DISCLOSURE | 113 | # **List of Figures** | Figure 1-1: NANO-SE-i1/KBN-i1/GLX | 2 | |--|----| | Figure 1-2: Connectors | 4 | | Figure 1-3: Dimensions (mm) | 5 | | Figure 1-4: Data Flow Diagram | 6 | | Figure 3-1: Connector and Jumper Locations | 15 | | Figure 3-2: 12V DC-IN Power Connector Location | 18 | | Figure 3-3: Audio Connector Location | 19 | | Figure 3-4: Battery Connector Location | 20 | | Figure 3-5: Brightness Button Connector Location | 20 | | Figure 3-6: Chassis Intrusion Connector Location | 21 | | Figure 3-7: DDR3 SO-DIMM Slot Location | 22 | | Figure 3-8: Digital I/O Connector Location | 23 | | Figure 3-9: Front Panel Connector Location | 24 | | Figure 3-10: IPMI LED Connector Location | 24 | | Figure 3-11: iRIS-1010 Module Slot Location | 25 | | Figure 3-12: Keyboard and Mouse Location | 26 | | Figure 3-13: LAN LED Connectors Location | 27 | | Figure 3-14: Backlight Inverter Connector Location | 28 | | Figure 3-15: LVDS Connector Location | 29 | | Figure 3-16: LVDS LED Connector Location | 30 | | Figure 3-17: PCle Mini Card Slot Location | 31 | | Figure 3-18: Power Button Connector Location | 31 | | Figure 3-19: Reset Button Connector Location | 32 | | Figure 3-20: RS-232 Serial Port Connector Location | 33 | | Figure 3-21: RS-422/485 Connector Location | 34 | | Figure 3-22: SATA 6Gb/s Drive Connector Location | 35 | | Figure 3-23: SATA Power Connector Location | 36 | | Figure 3-24: SMBUS Connectors Location | 37 | | Figure 3-25: SPDIF Connector Location | 37 | | Figure 3-26: SPI Flash Connector Location | 38 | | Figure 3-27: SPI Flash Connector Location | 39 | | Figure 3-28: System Fan Connector Locations | 40 | |---|----| | Figure 3-29: TPM Connector Location | 41 | | Figure 3-30: USB Connector Locations | 42 | | Figure 3-31: External Peripheral Interface Connector | 43 | | Figure 3-32: LAN Connector | 44 | | Figure 3-33: VGA Connector | 46 | | Figure 4-1: SO-DIMM Installation | 50 | | Figure 4-2: AT/ATX Mode Select Switch Location | 51 | | Figure 4-3: Clear CMOS Button Location | 52 | | Figure 4-4: LVDS Panel Resolution Selection Switch Location | 54 | | Figure 4-5: LVDS Voltage Selection Jumper Location | 55 | | Figure 4-6: Audio Kit Cable Connection | 56 | | Figure 4-7: SATA Drive Cable Connection | 57 | | Figure 4-8: Single RS-232 Cable Installation | 58 | | Figure 4-9: HDMI Connection | 59 | | Figure 4-10: LAN Connection | 60 | | Figure 4-11: USB Connector | 61 | | Figure 4-12: VGA Connector | 62 | | Figure 4-13: Heat Sink Retention Screws | 63 | # **List of Tables** | Table 1-1: NANO-SE-i1/KBN-i1/GLX Model Variations2 | |--| | Table 1-2: Technical Specifications9 | | Table 3-1: Peripheral Interface Connectors17 | | Table 3-2: Rear Panel Connectors17 | | Table 3-3: 12V DC-IN Power Connector Pinouts18 | | Table 3-4: Audio Connector Pinouts19 | | Table 3-5: Battery Connector Pinouts20 | | Table 3-6: Brightness Button Connector Pinouts21 | | Table 3-7: Chassis Intrusion Connector Pinouts22 | | Table 3-8: Digital I/O Connector Pinouts23 | | Table 3-9: Front Panel Connector Pinouts24 | | Table 3-10: IPMI LED Connector Pinouts25 | | Table 3-11: Keyboard and Mouse Connector Pinouts27 | | Table 3-12: LAN LED Connectors Pinouts27 | | Table 3-13: Backlight Inverter Connector Pinouts28 | | Table 3-14: LVDS Connector Pinouts29 | | Table 3-15: LVDS LED Connector Pinouts30 | | Table 3-16: Power Button Connector Pinouts31 | | Table 3-17: Reset Button Connector Pinouts32 | | Table 3-18: RS-232 Serial Port Connector Pinouts33 | | Table 3-19: RS-422/485 Connector Pinouts34 | | Table 3-20: DB-9 RS-422/485 Pinouts34 | | Table 3-21: SATA Power Connector Pinouts36 | | Table 3-22: SMBUS Connectors Pinouts37 | | Table 3-23: SPDIF Connector
Pinouts38 | | Table 3-24: SPI Flash Connector (BIOS) Pinouts39 | | Table 3-25: SPI Flash Connector (EC) Pinouts39 | | Table 3-26: System Fan Connector Pinouts40 | | Table 3-27: TPM Connector Pinouts41 | | Table 3-28: USB Connector Pinouts42 | | Table 3-29: HDMI Connector Pinouts43 | | Table 3-30: LAN Pinouts | 44 | |---|----| | Table 3-31: Connector LEDs | 44 | | Table 3-32: USB 2.0 Port Pinouts (USB2) | 45 | | Table 3-33: USB 3.0 Port Pinouts (USB1) | 45 | | Table 3-34: VGA Connector Pinouts | 46 | | Table 4-1: AT/ATX Mode Select Switch Settings | 51 | | Table 4-2: Clear CMOS Button Settings | 52 | | Table 4-3: LVDS Panel Resolution Selection | 53 | | Table 4-4: LVDS Voltage Selection Jumper Settings | 54 | | Table 5-1: BIOS Navigation Keys | 67 | # **BIOS Menus** | BIOS Menu 1: Main | 68 | |--|----| | BIOS Menu 2: Advanced | 70 | | BIOS Menu 3: ACPI Configuration | 70 | | BIOS Menu 4: Trusted Computing | 71 | | BIOS Menu 5: RTC Wake Settings | 72 | | BIOS Menu 6: CPU Configuration | 73 | | BIOS Menu 7: IDE Configuration | 74 | | BIOS Menu 8: USB Configuration | 75 | | BIOS Menu 9: Super IO Configuration | 76 | | BIOS Menu 10: Serial Port n Configuration Menu | 77 | | BIOS Menu 11: Hardware Health Configuration | 82 | | BIOS Menu 12: Smart FAN Configuration | 84 | | BIOS Menu 13: Serial Port Console Redirection | 85 | | BIOS Menu 14: Console Redirection Settings | 86 | | BIOS Menu 15: Chipset | 88 | | BIOS Menu 16: South Bridge Configuration | 89 | | BIOS Menu 17: North Bridge Configuration | 90 | | BIOS Menu 18: Boot | 91 | | BIOS Menu 19: Security | 93 | | BIOS Menu 20: Exit | 94 | | BIOS Menu 21: IDE Configuration | 95 | | BIOS Menu 22: PCH Azalia Configuration Menu | 96 | | BIOS Menu 23: PCH Azalia Configuration Menu | 97 | Chapter # Introduction ### 1.1 Introduction Figure 1-1: NANO-SE-i1/KBN-i1/GLX The NANO-SE-i1/KBN-i1/GLX EPIC SBC motherboard is an AMD® G-Series SoC processor platform. It supports one 204-pin up to 1866 MHz single-channel DDR3/DDR3L SO-DIMM up to 8.0 GB. The NANO-SE-i1/KBN-i1/GLX supports dual display via VGA, HDMI and an internal LVDS connector. Expansion and I/O include two USB 3.0 connectors on the rear panel, four USB 2.0 connectors by pin header, two USB 2.0 connectors on the rear panel and two SATA 6Gb/s connectors. Serial device connectivity is provided by five internal RS-232 connectors and one internal RS-422/485 connector. Two RJ-45 Ethernet connectors provide the system with smooth connections to an external LAN. #### 1.2 Model Variations The model variations of the NANO-SE-i1/KBN-i1/GLX Series are listed below. | Model No. | SoC | |-------------------|--| | NANO-SE-i1-4241 | AMD® 28nm quad core GX-424CC 2.4GHz (25W) | | NANO-KBN-i1-4151 | AMD® 28nm quad-core GX-415GA 1.5GHz (15W) | | NANO-KBN-i1-2101 | AMD® 28nm dual-core GX-210HA 1.0GHz (9W) | | NANO-GLX-2101 | AMD® 28nm dual core GX-210KL 1.0GHz (4.5W) | | NANO-GLX-2101-ECO | AMD® 28nm dual core GX-210KL 1.0GHz (4.5W) | Table 1-1: NANO-SE-i1/KBN-i1/GLX Model Variations #### NANO-SE-i1/KBN-i1/GLX EPIC SBC ## 1.3 Features Some of the NANO-SE-i1/KBN-i1/GLX motherboard features are listed below: - EPIC SBC supports AMD® Embedded G-Series "Steppe Eagle" SoC - Dual independent display support - 1.35V DDR3L up to 1866MHz SDRAM supports (system max. 8GB) - HD Audio supported by S/PDIF - Support IPMI 2.0 with iRIS-1010 module - COM, USB 3.0, SATA 6Gb/s PCIe Mini, mSATA and Audio supported # 1.4 Connectors The connectors on the NANO-SE-i1/KBN-i1/GLX are shown in the figure below. Figure 1-2: Connectors ## 1.5 Dimensions The dimensions of the board are listed below: Figure 1-3: Dimensions (mm) ## 1.6 Data Flow **Figure 1-4** shows the data flow between the system chipset, the CPU and other components installed on the motherboard. Figure 1-4: Data Flow Diagram ## NANO-SE-i1/KBN-i1/GLX EPIC SBC # 1.7 Technical Specifications NANO-SE-i1/KBN-i1/GLX technical specifications are listed below. | Specification | NANO-SE-i1/KBN-i1/GLX | |-----------------|---| | SoC | » AMD® Embedded G-Series "Steppe Eagle" SoC | | | GX-424CC on-board Soc (2.4GHz, quad-core, 2MB cache, | | | TDP=25W) | | | » AMD® Embedded G-Series "eKabini" SoC | | | GX-415GA on-board Soc (1.5GHz, quad-core, 2MB cache, TDP=15W) | | | GX-210HA on-board Soc (1.0GHz, dual-core, 1MB cache, TDP=9W) | | | » AMD® Embedded G-Series "LX" SoC | | | GX-210KL on-board Soc (1.0GHz, dual-core, 1MB cache, | | | TDP=4.5W) | | Memory | One 204-pin 1600/1333 MHz single-channel DDR3 & DDR3L | | | SDRAM unbuffered | | | SO-DIMM slot supports up to 8 GB | | BIOS | AMI UEFI BIOS | | Ethernet | LAN1: Intel® I210-AT PCIe controller with NCSI support | | | LAN2: Intel® I211-AT PCIe controller | | Graphics Engine | Support DX11.1, OpenGL 4.1 and OpenCL1.2 | | | UVD4.2 decode for H.264, MPEG2/4, VC1, MVC | | | VCE 2.0 encode for H.264, VCE | | Display Output | Dual independent display | | | 1 x VGA (up to 2048x1536@60Hz) | | | 1 x HDMI (up to 3840x2160@60Hz) | | | 1 x 18/24-bit dual-channel LVDS (up to 1920x1200@60Hz) | | Specification | NANO-SE-i1/KBN-i1/GLX | | |------------------------|---|--| | Internal I/O Interface | 1 x KB/MS (1x6 pin) | | | | 4 x USB 2.0 (2x4 pin, P=2.0) | | | | 1 x RS-422/485 (1x4 pin, P=2.0) | | | | 5 x RS-232 (2x5 pin, P=2.0) | | | | 2 x SATA 6Gb/s with 5V SATA power connector (no RAID) | | | External I/O Interface | 2 x USB 2.0 | | | | 2 x USB 3.0 | | | iRIS Remote Management | 1 x iRIS-1010 slot (NANO-GLX-2101-R10 support by request) | | | Module | | | | ТРМ | 1 x TPM (2x10 pin) | | | SMBus | 1 x SMBus (1x4 pin) | | | I2C | 1 x I ² C (1x4 pin) | | | Audio | Realtek ALC892 HD Audio codec | | | | 1 x Front audio (2x5 pin) | | | | 1 x S/PDIF (1x4 pin) | | | Front Panel | 1 x Power LED & HDD LED (1x6 pin) | | | | 1 x Power button (1x2 pin) | | | | 1 x Reset button (1x2 pin) | | | LAN LED | 2 x LAN LED (1x2 pin) | | | Expansion | 1 x Full-size PCIe Mini card slot (supports mSATA co-lay | | | | SATA port 2) | | | Watchdog Timer | Software programmable, support 1~255 sec. system reset | | | Digital I/O | 8-bit digital I/O (2x5 pin) | | | Fan Connector | 1 x System smart fan (1x4 pin) | | | Power Supply | 12V only DC input | | | | 1 x Internal power connector (2x2 pin) | | | | Support AT/ATX mode | | ## NANO-SE-i1/KBN-i1/GLX EPIC SBC | Specification | NANO-SE-i1/KBN-i1/GLX | |-----------------------|--| | Power Consumption | 12V@1.02A (AMD GX-415GA 1.5GHz CPU with 1600 MHz 8 | | | GB DDR3 memory) | | Operating Temperature | 0°C ~ 60°C | | Storage Temperature | -10°C ~ 70°C | | Humidity | 5% ~ 95% (non-condensing) | | Dimensions | 115mm x 165mm | | Weight GW/NW | 850g / 350g | | Safety | CE/FCC compliant | **Table 1-2: Technical Specifications** Chapter 2 # Unpacking #### 2.1 Anti-static Precautions #### WARNING! Static electricity can destroy certain electronics. Make sure to follow the ESD precautions to prevent damage to the product, and injury to the user. Make sure to adhere to the following guidelines: - Wear an anti-static wristband: Wearing an anti-static wristband can prevent electrostatic discharge. - Self-grounding: Touch a grounded conductor every few minutes to discharge any excess static buildup. - Use an anti-static pad: When configuring any circuit board, place it on an anti-static mat. - Only handle the edges of the PCB: Don't touch the surface of the motherboard. Hold the motherboard by the edges when handling. ## 2.2 Unpacking Precautions When the NANO-SE-i1/KBN-i1/GLX is unpacked, please do the following: - Follow the antistatic guidelines above. - Make sure the packing box is facing upwards when opening. - Make sure all the packing list items are present. # 2.3 Packing List If any of the components listed in the checklist below are missing, do not proceed with the installation. Contact the IEI reseller or vendor the NANO-SE-i1/KBN-i1/GLX was purchased from or contact an IEI sales representative directly by sending an email to sales@iei.com.tw. The NANO-SE-i1/KBN-i1/GLX is shipped with the following components: | Quantity | Item and Part Number | Image | |----------|-------------------------------------
--| | 1 | NANO-SE-i1/KBN-i1/GLX motherboard | | | 1 | Audio cable | | | | (P/N : 32007-002600-200-RS) | | | 2 | SATA with 5V output cable kit | | | | (P/N : 32801-000201-300-RS) | | | 2 | RS-232 cable | | | | (P/N : 32205-002700-100-RS) | | | 1 | Power cable | | | | (P/N : 32100-087100-RS) | | | 1 | Quick Installation Guide | Grant hand demonstrate The state of sta | ## NANO-SE-i1/KBN-i1/GLX EPIC SBC # 2.4 Optional Items The following are optional components which may be separately purchased: | Item and Part Number | Image | |---|-------| | Dual-port USB cable without bracket (P/N : 32000-070301-RS) | B.O. | | RS-422/485 cable, 200mm
(P/N : 32205-003800-300-RS) | | | PS/2 KB/MS cable (P/N : 32000-023800-RS) | | | 20-Pin Infineon TPM module, software management tool, firmware V3.17 (P/N : TPM-IN01-R11) | | Chapter 3 # **Connectors** # 3.1 Peripheral Interface Connectors This chapter details all the jumpers and connectors. ### 3.1.1 NANO-SE-i1/KBN-i1/GLX Layout The figures below show all the connectors and jumpers. Figure 3-1: Connector and Jumper Locations #### 3.1.2 Peripheral Interface Connectors The table below lists all the connectors on the board. | Connector | Туре | Label | |-----------------------------|-------------------|--------| | 12V DC-IN power connector | 4-pin Molex | CN1 | | Audio connector | 10-pin box header | AUDIO1 | | Battery connector | 2-pin wafer | BAT1 | | Brightness button connector | 6-pin wafer | CN6 | | Chassis intrusion connector | 2-pin header | CHASSIS1 | |-----------------------------------|-----------------------|--------------------| | DDR3 SO-DIMM slot | DDR3 SO-DIMM slot | DIMM1 | | Digital I/O connector | 10-pin header | DIO1 | | Front panel connector | 6-pin wafer | CN2 | | IPMI LED connector | 2-pin header | ID_LED1 | | iRIS-1010 module slot | iRIS-1010 module slot | IPMI1 | | Keyboard and mouse connector | 6-pin wafer | KB_MS1 | | LAN LED connectors | 2-pin header | LED_LAN2, LED_LAN3 | | LVDS backlight inverter connector | 5-pin wafer | INV1 | | LVDS LCD connector | 30-pin crimp | LVDS1 | | LVDS LED connector | 4-pin wafer | CN5 | | PCIe mini card slot | PCIe Mini card slot | M_PCIE2 | | Power button connector | 2-pin wafer | PWR_BTN1 | | Reset button connector | 2-pin wafer | RST_BTN1 | | RS-232 serial port connectors | 10-pin header | COM1, COM2, COM3, | | K3-232 Serial port connectors | то-ріп пеацеі | COM4, COM5 | | RS-422/485 serial port connector | 4-pin wafer | СОМ6 | | SATA 6Gb/s drive connectors | 7-pin SATA connector | SATA1, SATA2 | | SATA power connectors | 2-pin wafer | SATA_PWR1, | | OATA power confidences | 2-piii walei | SATA_PWR2 | | SMBUS connectors | 4-pin wafer | CN3, CN4 | | SPDIF connector | 5-pin header | SPDIF1 | | SPI flash connector (BIOS) | 6-pin wafer | SPI1 | | SPI flash connector (EC) | 2-pin header | CN7 | | | | | #### NANO-SE-i1/KBN-i1/GLX EPIC SBC | System fan connector | 4-pin wafer | SYS_FAN | |----------------------|------------------|------------| | TPM connector | 20-pin connector | TPM1 | | USB 2.0 connectors | 8-pin header | USB3, USB4 | **Table 3-1: Peripheral Interface Connectors** #### 3.1.3 External Interface Panel Connectors The table below lists the connectors on the external I/O panel. | Connector | Туре | Label | |--------------------|------------------|------------| | HDMI connector | HDMI Type A port | HDMI1 | | LAN connectors | RJ-45 | LAN1, LAN2 | | USB 3.0 connectors | USB 3.0 | USB1 | | USB 2.0 connectors | USB 2.0 | USB2 | | VGA connector | 15-pin female | VGA1 | **Table 3-2: Rear Panel Connectors** # 3.2 Internal Peripheral Connectors The section describes all of the connectors on the NANO-SE-i1/KBN-i1/GLX. #### 3.2.1 12V DC-IN Power Connector CN Label: CN1 **CN Type:** 4-pin Molex, P=4.20 mm **CN Location:** See **Figure 3-2** **CN Pinouts:** See **Table 3-3** The connector supports the 12V power supply. Figure 3-2: 12V DC-IN Power Connector Location | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | GND | 2 | GND | | 3 | 12V-IN | 4 | 12V-IN | **Table 3-3: 12V DC-IN Power Connector Pinouts** #### 3.2.2 Audio Connector CN Label: AUDIO1 **CN Type:** 10-pin box header, P=2.00 mm CN Location: See Figure 3-3 CN Pinouts: See Table 3-4 The audio connector is connected to external audio devices including speakers and microphones for the input and output of audio signals to and from the system. #### NANO-SE-i1/KBN-i1/GLX EPIC SBC **Figure 3-3: Audio Connector Location** | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | LINEOUT1R | 2 | LINE1R | | 3 | GND | 4 | GND | | 5 | LINEOUT1L | 6 | LINE1L | | 7 | GND | 8 | GND | | 9 | FMIC1R | 10 | FMIC1L | **Table 3-4: Audio Connector Pinouts** ## 3.2.3 Battery Connector CN Label: BAT1 **CN Type:** 2-pin wafer, P=1.25 mm CN Location: See Figure 3-4 CN Pinouts: See Table 3-5 The battery connector is connected to the system battery. The battery provides power to the system clock to retain the time when power is turned off. **Figure 3-4: Battery Connector Location** | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | VBATT | 2 | GND | **Table 3-5: Battery Connector Pinouts** ### 3.2.4 Brightness button connector CN Label: CN6 **CN Type:** 6-pin wafer, P=1.25 mm CN Location: See Figure 3-5 CN Pinouts: See Table 3-6 The brightness button connector is connected to the brightness button. Figure 3-5: Brightness Button Connector Location #### NANO-SE-i1/KBN-i1/GLX EPIC SBC | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | PWRON | 2 | GND | | 3 | BLUP | 4 | GND | | 5 | BLDN | 6 | GND | **Table 3-6: Brightness Button Connector Pinouts** #### 3.2.5 Chassis Intrusion Connector CN Label: CHASSIS1 **CN Type:** 2-pin header, P=2.00 mm CN Location: See Figure 3-6 **CN Pinouts:** See **Table 3-7** The chassis intrusion connector is for a chassis intrusion detection sensor or switch that detects if a chassis component is removed or replaced. Figure 3-6: Chassis Intrusion Connector Location | Pin | Description | |-----|-------------| | 1 | +V3.3A_EC | | 2 | CHASSIE_EC | **Table 3-7: Chassis Intrusion Connector Pinouts** #### 3.2.6 DDR3 SO-DIMM Slot CN Label: DIMM1 CN Type: DDR3 SO-DIMM slot CN Location: See Figure 3-7 The DDR3 SO-DIMM slot is for DDR3 SO-DIMM memory module. Figure 3-7: DDR3 SO-DIMM Slot Location ## 3.2.7 Digital I/O Connector CN Label: DIO1 **CN Type:** 10-pin header, P=2.00 mm CN Location: See Figure 3-8 **CN Pinouts:** See **Table 3-8** The digital I/O connector provides programmable input and output for external devices. The digital I/O provides 4-bit output and 4-bit input. Figure 3-8: Digital I/O Connector Location | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | GND | 2 | +5V | | 3 | DOUT3 | 4 | DOUT2 | | 5 | DOUT1 | 6 | DOUT0 | | 7 | DIN3 | 8 | DIN2 | | 9 | DIN1 | 10 | DIN0 | **Table 3-8: Digital I/O Connector Pinouts** #### 3.2.8 Front Panel Connector CN Label: CN2 **CN Type:** 6-pin wafer, P=2.00 mm CN Location: See Figure 3-9 CN Pinouts: See Table 3-9 The front panel connector connects to the indicator LEDs on the system front panel. **Figure 3-9: Front Panel Connector Location** | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | VCC | 2 | GND | | 3 | PWR_LED+ | 4 | PWR_LED- | | 5 | HDD_LED+ | 6 | HDD_LED- | **Table 3-9: Front Panel Connector Pinouts** # 3.2.9 IPMI LED Connector CN Label: ID_LED1 **CN Type:** 2-pin header, P=2.00 mm **CN Location:** See **Figure 3-10** CN Pinouts: See Table 3-10 The IPMI LED connector is used to connect to the IPMI LED indicator on the chassis.
Figure 3-10: IPMI LED Connector Location | Pin | Description | |-----|-------------| | 1 | ID_LED+ | | 2 | ID_LED- | **Table 3-10: IPMI LED Connector Pinouts** ## 3.2.10 iRIS-1010 module slot CN Label: IPMI1 CN Type: IPMI 2.0 slot, P=0.80 mm CN Location: See Figure 3-11 The iRIS-1010 module slot allows installation of the iRIS-1010 module. Figure 3-11: iRIS-1010 Module Slot Location ## **WARNING:** The iRIS-1010 module slot is designed to install the IEI iRIS-1010 IPMI 2.0 module. DO NOT install other modules into the iRIS-1010 module slot. Doing so may cause damage to the NANO-SE-i1/KBN-i1/GLX. ## 3.2.11 Keyboard and Mouse Connector CN Label: KB_MS1 **CN Type:** 6-pin wafer, P=2.00 mm **CN Location:** See **Figure 3-12** CN Pinouts: See Table 3-11 The keyboard/mouse connector connects to a PS/2 Y-cable that can be connected to a PS/2 keyboard and mouse. Figure 3-12: Keyboard and Mouse Location | Pin | Description | |-----|---------------| | 1 | VCC | | 2 | Mouse Data | | 3 | Mouse Clock | | 4 | Keyboard Data | | Pin | Description | | |-----|----------------|--| | 5 | Keyboard Clock | | | 6 | GND | | **Table 3-11: Keyboard and Mouse Connector Pinouts** ## 3.2.12 LAN LED Connectors CN Label: LED_LAN2, LED_LAN3 **CN Type:** 2-pin header, P=2.54 mm **CN Location:** See **Figure 3-13** CN Pinouts: See Table 3-12 The LAN LED connectors connect to the LAN link LEDs on the system. Figure 3-13: LAN LED Connectors Location | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------------| | 1 | +3.3V | 2 | LAN_LED_LINK#_ACT | **Table 3-12: LAN LED Connectors Pinouts** ## 3.2.13 LVDS Backlight Inverter Connector CN Label: INV1 #### NANO-SE-i1/KBN-i1/GLX **CN Type:** 5-pin wafer, P=2.00 mm **CN Location:** See **Figure 3-14** **CN Pinouts:** See **Table 3-13** The backlight inverter connector provides power to an LCD panel. Figure 3-14: Backlight Inverter Connector Location | Pin | Description | |-----|-------------| | 1 | BRIGHTNESS2 | | 2 | GND | | 3 | 12V | | 4 | GND | | 5 | ENABKL2 | **Table 3-13: Backlight Inverter Connector Pinouts** #### 3.2.14 LVDS LCD Connector CN Label: LVDS1 **CN Type:** 30-pin crimp, P=1.25 mm **CN Location:** See **Figure 3-15** CN Pinouts: See Table 3-14 The LVDS connector is for an LCD panel connected to the board. Figure 3-15: LVDS Connector Location | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | GND | 2 | GND | | 3 | A0P_L | 4 | A0M_L | | 5 | A1P_L | 6 | A1M_L | | 7 | A2P_L | 8 | A2M_L | | 9 | CLK1P_L | 10 | CLK1M_L | | 11 | A3P_L | 12 | A3M_L | | 13 | GND | 14 | GND | | 15 | A4P_L | 16 | A4M_L | | 17 | A5P_L | 18 | A5M_L | | 19 | A6P_L | 20 | A6M_L | | 21 | CLK2P_L | 22 | CLK2M_L | | 23 | A7P_L | 24 | A7M_L | | 25 | GND | 26 | GND | | 27 | VCC | 28 | VCC | | 29 | VCC | 30 | VCC | **Table 3-14: LVDS Connector Pinouts** # 3.2.15 LVDS LED connector CN Label: CN5 **CN Type:** 4-pin wafer, P=1.25 mm CN Location: See Figure 3-16 **CN Pinouts:** See **Table 3-15** The backlight inverter connector provides power to an LCD panel. Figure 3-16: LVDS LED Connector Location | Pin | Description | |-----|-------------| | 1 | VCC33 | | 2 | OLED | | 3 | VCC33 | | 4 | GLED | **Table 3-15: LVDS LED Connector Pinouts** #### 3.2.16 PCle Mini Card Slot CN Label: M_PCIE2 **CN Type:** PCle Mini card slot, P=0.80 mm **CN Location:** See **Figure 3-17** The PCIe Mini card slot is for installing a PCIe Mini expansion card. Figure 3-17: PCle Mini Card Slot Location #### 3.2.17 Power Button Connector CN Label: PWR_BTN1 **CN Type:** 2-pin wafer, P=2.00 mm CN Location: See Figure 3-18 CN Pinouts: See Table 3-16 The power button connector is connected to a power switch on the system chassis to enable users to turn the system on and off. Figure 3-18: Power Button Connector Location | Pin | Description | |-----|-------------| | 1 | PWRBTSW# | | 2 | GND | **Table 3-16: Power Button Connector Pinouts** #### 3.2.18 Reset Button Connector CN Label: RST_BTN1 **CN Type:** 2-pin wafer, P=2.00 mm CN Location: See Figure 3-19 **CN Pinouts:** See **Table 3-17** The reset button connector is connected to a reset switch on the system chassis to enable users to reboot the system when the system is turned on. Figure 3-19: Reset Button Connector Location | Pin | Description | |-----|-------------| | 1 | PM_SYSRST# | | 2 | GND | **Table 3-17: Reset Button Connector Pinouts** #### 3.2.19 RS-232 Serial Port Connector CN Label: COM1, COM2, COM3, COM4, COM5 **CN Type:** 10-pin header, P=2.00 mm CN Location: See Figure 3-20 **CN Pinouts:** See **Table 3-18** The serial connector provides RS-232 connection. Figure 3-20: RS-232 Serial Port Connector Location | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | NDCD | 2 | NDSR | | 3 | NRX | 4 | NRTS | | 5 | NTX | 6 | NCTS | | 7 | NDTR | 8 | NRI | | 9 | GND | 10 | GND | Table 3-18: RS-232 Serial Port Connector Pinouts #### 3.2.20 RS-422/485 Serial Port Connector CN Label: COM6 **CN Type:** 4-pin wafer, P=2.00 mm CN Location: See Figure 3-21 CN Pinouts: See Table 3-19 This connector provides RS-422 or RS-485 communications. Figure 3-21: RS-422/485 Connector Location | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | RXD485# | 2 | RXD485+ | | 3 | TXD485+ | 4 | TXD485# | Table 3-19: RS-422/485 Connector Pinouts Use the optional RS-422/485 cable to connect to a serial device. The pinouts of the DB-9 connector are listed below. Table 3-20: DB-9 RS-422/485 Pinouts #### 3.2.21 SATA 6Gb/s Drive Connector CN Label: SATA1, SATA2 **CN Type:** 7-pin SATA connector, P=1.70 mm CN Location: See Figure 3-22 The SATA 6Gb/s drive connector is connected to a SATA 6Gb/s drive. The SATA 6Gb/s drive transfers data at speeds as high as 6Gb/s. Figure 3-22: SATA 6Gb/s Drive Connector Location #### 3.2.22 SATA Power Connector CN Label: SATA_PWR1, SATA_PWR2 **CN Type:** 2-pin wafer, P=2.00 mm CN Location: See Figure 3-23 CN Pinouts: See Table 3-21 The SATA power connector provides +5V power output to the SATA connector. Figure 3-23: SATA Power Connector Location | PIN NO. | DESCRIPTION | |---------|-------------| | 1 | +5V | | 2 | GND | **Table 3-21: SATA Power Connector Pinouts** #### 3.2.23 SMBUS Connector CN Label: CN3, CN4 **CN Type:** 4-pin wafer, P=1.25 mm **CN Location:** See **Figure 3-24** **CN Pinouts:** See **Table 3-22** The SMBUS (System Management Bus) connector provides low-speed system management communications. Figure 3-24: SMBUS Connectors Location | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | GND | 2 | SMBDATA | | 3 | SMBCLK | 4 | +5V | **Table 3-22: SMBUS Connectors Pinouts** #### 3.2.24 SPDIF Connector CN Label: SPDIF1 **CN Type:** 5-pin header, P=2.54 mm **CN Location:** See **Figure 3-25** CN Pinouts: See Table 3-23 Use the SPDIF connector to connect digital audio devices to the system. Figure 3-25: SPDIF Connector Location | PIN | DESCRIPTION | |-----|-------------| | 1 | +5V | | 2 | NC | | 3 | SPDIF OUT | | 4 | GND | | 5 | SPDIF IN | **Table 3-23: SPDIF Connector Pinouts** # 3.2.25 SPI Flash Connector (BIOS) CN Label: SPI1 **CN Type:** 6-pin wafer, P=1.25 mm CN Location: See Figure 3-26 CN Pinouts: See Table 3-24 The SPI Flash connector is used to flash the BIOS. Figure 3-26: SPI Flash Connector Location | Pin | Description | |-----|-------------| | 1 | SPI_POWER | | 2 | SPI_CS# | | 3 | SPI_DATAIN | | Pin | Description | |-----|-------------| | 4 | SPI_CLK | | 5 | SPI_DATAOUT | | 6 | GND | Table 3-24: SPI Flash Connector (BIOS) Pinouts ## 3.2.26 SPI Flash Connector (EC) CN Label: CN7 **CN Type:** 2-pin header, P=2.00 mm **CN Location:** See **Figure 3-27** CN Pinouts: See Table 3-25 The SPI Flash connector is used to flash the Embedded Controller. Figure 3-27: SPI Flash Connector Location | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | SMCLK1_EC | 2 | SMDAT1_EC | Table 3-25: SPI Flash Connector (EC) Pinouts # 3.2.27 System Fan Connector CN Label: SYS_FAN **CN Type:** 4-pin wafer, P=2.54 mm **CN Location:** See **Figure 3-28** CN Pinouts: See Table 3-26 The fan connector attaches to a system cooling fan. Figure 3-28: System Fan Connector Locations | PIN NO. | DESCRIPTION | TON PIN NO. DESCRIPTION | | |---------|-------------|-------------------------|--------| | 1 | GND | 2 | +12V | | 3 | FANIN | 4 | FANOUT | **Table 3-26: System Fan Connector Pinouts** ## 3.2.28 TPM Connector CN Label: TPM1 **CN Type:** 20-pin connector, P=2.54 mm CN Location: See Figure 3-29 CN Pinouts: See Table 3-27 The Trusted Platform Module (TPM) connector secures the system on bootup. **Figure 3-29: TPM Connector Location** | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | LPC_CLK1 | 2 | GND | | 3 | LFRAME# | 4 | NC | | 5 | LPC_RST# | 6 | +5V | | 7 | LAD3 | 8 | LAD2 | | 9 | +3.3V | 10 | LAD1 | | 11 | LAD0 | 12 | GND | | 13 | SCLK0 | 14 | SDATA0 | | 15 | +3.3V_DUAL | 16 | SERIRQ | | 17 | GND | 18 | LPC_CLKRUN# | | 19 | LPCPD# | 20 | LDRQ#0 | **Table 3-27: TPM Connector Pinouts** #### 3.2.29 USB Connector CN Label: USB3, USB4 **CN Type:** 8-pin header, P=2.00 mm CN Location: See Figure 3-30 CN Pinouts: See Table 3-28 The USB connector provides two USB 2.0 ports by dual-port USB cable. Figure 3-30: USB Connector Locations | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | VCC | 2 | GND | | 3 | USB_DATA- | 4 | USB_DATA+ | | 5 | USB_DATA+ | 6 | USB_DATA- | | 7 | GND | 8 | VCC | **Table 3-28: USB Connector Pinouts** # 3.3 External Peripheral Interface Connector Panel **Figure 3-31** shows the NANO-SE-i1/KBN-i1/GLX external peripheral interface connector (EPIC) panel. The EPIC panel consists of the following: - 1 x HDMI connector - 2 x RJ-45 LAN connectors - 2 x USB 3.0 connectors - 2 x USB 2.0 connectors - 1 x VGA connector Figure 3-31: External
Peripheral Interface Connector #### 3.3.1 HDMI Connector CN Label: HDMI1 **CN Type:** HDMI type A connector **CN Location:** See **Figure 3-31** CN Pinouts: See Table 3-29 The HDMI (High-Definition Multimedia Interface) connector connects to digital audio or video sources. | PIN | DESCRIPTION | PIN DESCRIPTION | | | |-----|--------------------|-----------------|--------------------|--| | 1 | HDMI_TMDS_C_DATA2 | 2 | GND | | | 3 | HDMI_TMDS_C_DATA2# | 4 | HDMI_TMDS_C_DATA1 | | | 5 | GND | 6 | HDMI_TMDS_C_DATA1# | | | 7 | HDMI_TMDS_C_DATA0 | 8 | GND | | | 9 | HDMI_TMDS_C_DATA0# | 10 | HDMI_TMDS_C_CLK | | | 11 | GND | 12 | HDMI_TMDS_C_CLK# | | | 13 | NC | 14 | NC | | | 15 | HDMI_DDC_SCLK | 16 | HDMI_DDC_SDATA | | | 17 | GND | 18 | +5V_HDMI | | | 19 | HDMI_HPD | | | | **Table 3-29: HDMI Connector Pinouts** # 3.3.2 LAN Connectors CN Label: LAN1, LAN2 CN Type: RJ-45 CN Location: See Figure 3-31 CN Pinouts: See Figure 3-32 and Table 3-30 The LAN connector connects to a local network. Figure 3-32: LAN Connector | Pin | Description | Pin | Description | |-----|-------------|---------|-------------| | 1 | MDIO+ | 2 MDI0- | | | 3 | MDI1+ | 4 | MDI1- | | 5 | MDI2+ | 6 | MDI2- | | 7 | MDI3+ | 8 | MDI3- | Table 3-30: LAN Pinouts | LED | Description | LED | Description | |-----|---------------------------------------|-----|-------------------| | Α | on: linked | В | off: 10 Mb/s | | | blinking: data is being sent/received | | green: 100 Mb/s | | | | | orange: 1000 Mb/s | **Table 3-31: Connector LEDs** #### 3.3.3 USB Connectors CN Label: USB2, USB1 **CN Type:** USB 2.0 ports, USB 3.0 ports CN Location: See Figure 3-31 CN Pinouts: See Table 3-32 and Table 3-33 The NANO-SE-i1/KBN-i1/GLX has two external USB 2.0 ports and two external USB 3.0 ports. The pinouts of USB 2.0 connectors are shown below. | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|-------------|---------|-------------| | 1 | POWER | 2 | DATAO_N | | 3 | DATAO_P | 4 | GND | | 5 | POWER | 6 | DATA1_N | | 7 | DATA1_P | 8 | GND | Table 3-32: USB 2.0 Port Pinouts (USB2) The pinouts of USB 3.0 connectors are shown below. | PIN NO. | DESCRIPTION | PIN NO. | DESCRIPTION | |---------|----------------|---------|----------------| | 1 | USB_3P0_VCC1 | 2 | USB2P8_DMO_L | | 3 | USB2P8_DP0_L | 4 | GND | | 5 | USB3P0_RXDN0_C | 6 | USB3P0_RXDP0_C | | 7 | GND | 8 | USB3P0_TXDN0_C | | 9 | USB3P0_TXDP0_C | 10 | USB_3P0_VCC2 | | 11 | USB2P9_DM1_L | 12 | USB2P9_DP1_L | | 13 | GND | 14 | USB3P0_RXDN1_C | | 15 | USB3P0_RXDP1_C | 16 | GND | | 17 | USB3P0_TXDN1_C | 18 | USB3P0_TXDP1_C | Table 3-33: USB 3.0 Port Pinouts (USB1) #### 3.3.4 VGA Connector CN Label: VGA1 **CN Type:** 15-pin Female **CN Location:** See **Figure 3-31** CN Pinouts: See Table 3-34 The VGA connector connects to a monitor that accepts a standard VGA input. # NANO-SE-i1/KBN-i1/GLX | PIN | DESCRIPTION | PIN | DESCRIPTION | |-----|-------------|-----|-------------| | 1 | RED | 2 | GREEN | | 3 | BLUE | 4 | NC | | 5 | GND | 6 | GND | | 7 | GND | 8 | GND | | 9 | CRT_VCC | 10 | GND | | 11 | NC | 12 | 5VDDCDA | | 13 | VGA_HSYNC | 14 | VGA_VSYNC | | 15 | 5VDDCLK | | | **Table 3-34: VGA Connector Pinouts** Figure 3-33: VGA Connector Chapter 4 # Installation #### 4.1 Anti-static Precautions #### WARNING: Failure to take ESD precautions during the installation of the NANO-SE-i1/KBN-i1/GLX may result in permanent damage to the NANO-SE-i1/KBN-i1/GLX and severe injury to the user. Electrostatic discharge (ESD) can cause serious damage to electronic components, including the NANO-SE-i1/KBN-i1/GLX. Dry climates are especially susceptible to ESD. It is therefore critical that whenever the NANO-SE-i1/KBN-i1/GLX or any other electrical component is handled, the following anti-static precautions are strictly adhered to. - Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging the board. - Self-grounding: Before handling the board, touch any grounded conducting material. During the time the board is handled, frequently touch any conducting materials that are connected to the ground. - Use an anti-static pad: When configuring the NANO-SE-i1/KBN-i1/GLX, place it on an antic-static pad. This reduces the possibility of ESD damaging the NANO-SE-i1/KBN-i1/GLX. - Only handle the edges of the PCB: When handling the PCB, hold the PCB by the edges. #### 4.2 Installation Considerations # NOTE: The following installation notices and installation considerations should be read and understood before installation. All installation notices must be strictly adhered to. Failing to adhere to these precautions may lead to severe damage and injury to the person performing the installation. # WARNING: The installation instructions described in this manual should be carefully followed in order to prevent damage to the NANO-SE-i1/KBN-i1/GLX, NANO-SE-i1/KBN-i1/GLX components and injury to the user. Before and during the installation please DO the following: - Read the user manual: - The user manual provides a complete description of the NANO-SE-i1/KBN-i1/GLX installation instructions and configuration options. - Wear an electrostatic discharge cuff (ESD): - Electronic components are easily damaged by ESD. Wearing an ESD cuff removes ESD from the body and helps prevent ESD damage. - Place the NANO-SE-i1/KBN-i1/GLX on an antistatic pad: - O When installing or configuring the motherboard, place it on an antistatic pad. This helps to prevent potential ESD damage. - Turn all power to the NANO-SE-i1/KBN-i1/GLX off: - O When working with the NANO-SE-i1/KBN-i1/GLX, make sure that it is disconnected from all power supplies and that no electricity is being fed into the system. Before and during the installation of the NANO-SE-i1/KBN-i1/GLX **DO NOT**: - Remove any of the stickers on the PCB board. These stickers are required for warranty validation. - Use the product before verifying all the cables and power connectors are properly connected. - Allow screws to come in contact with the PCB circuit, connector pins, or its components. #### 4.3 SO-DIMM Installation ## **WARNING:** Using incorrectly specified SO-DIMM may cause permanently damage the NANO-SE-i1/KBN-i1/GLX. Please make sure the purchased SO-DIMM complies with the memory specifications of the NANO-SE-i1/KBN-i1/GLX. SO-DIMM specifications compliant with the NANO-SE-i1/KBN-i1/GLX are listed in the specification table of Chapter 1. To install an SO-DIMM, please follow the steps below and refer to Figure 4-1. Figure 4-1: SO-DIMM Installation - Step 1: Locate the SO-DIMM socket. Place the board on an anti-static mat. - Step 2: Align the SO-DIMM with the socket. Align the notch on the memory with the notch on the memory socket. - **Step 3:** Insert the SO-DIMM. Push the memory in at a 20° angle. (See Figure 4-1) - **Step 4: Seat the SO-DIMM**. Gently push downwards and the arms clip into place. (See Figure 4-1) # 4.4 System Configuration The system configuration is controlled by buttons, jumpers and switches. The system configuration should be performed before installation. #### 4.4.1 AT/ATX Mode Select Switch CN Label: J_ATX_AT1 CN Type: switch CN Location: See Figure 4-2 CN Settings: See Table 4-1 The AT/ATX mode select switch specifies the systems power mode as AT or ATX. AT/ATX mode select switch settings are shown in **Table 4-1**. | Setting | Description | |-----------|--------------------| | Short A-B | AT Mode | | Short B-C | ATX Mode (Default) | Table 4-1: AT/ATX Mode Select Switch Settings The location of the AT/ATX mode select switch is shown in **Figure 4-2** below. Figure 4-2: AT/ATX Mode Select Switch Location #### 4.4.1 Clear CMOS Button CN Label: J_CMOS1 **CN Type:** button CN Location: See Figure 4-3 CN Settings: See Table 4-2 If the NANO-SE-i1/KBN-i1/GLX fails to boot due to improper BIOS settings, use the button to clear the CMOS data and reset the system BIOS information. The clear CMOS button settings are shown in **Table 4-2**. | Setting | Description | |---------|----------------------------| | Open | Normal Operation (Default) | | Push | Clear CMOS Setup | **Table 4-2: Clear CMOS Button Settings** The location of the clear CMOS button is shown in Figure 4-3. Figure 4-3: Clear CMOS Button Location #### 4.4.2 LVDS Panel Resolution Selection Jumper Label: SW1 Jumper Type: DIP switch Jumper Settings: See Table 4-3 Jumper Location: See Figure 4-4 Selects the resolution of the LCD panel connected to the LVDS connector. * ON=0, OFF=1; Single=S, Dual=D | SW1 (4-3-2-1) | Description | |---------------|----------------------------| | 0000 | 800x600 18-bit S (Default) | | 0001 | 1024x768 18-bit S | | 0010 | 1024x768 24-bit S | | 0011 | 1280x768 18-bit S | | 0100 | 1280x800 18-bit S | | 0101 | 1280x960 18-bit S | | 0110 | 1280x1024 24-bit D | | 0111 | 1366x768 18-bit S | | 1000 | 1366x768 24-bit S | | 1001 | 1440x960 24-bit D | | 1010 | 1400x1050 24-bit D | | 1011 | 1600x900 24-bit D | | 1100 | 1680x1050 24-bit D | | 1101 | 1600x1200 24-bit D | | 1110 | 1920x1080 24-bit D | | 1111 | 1920x1200 24-bit D | **Table 4-3: LVDS Panel Resolution Selection** #### NANO-SE-i1/KBN-i1/GLX Figure 4-4: LVDS Panel Resolution Selection Switch Location ## 4.4.3 LVDS Voltage Selection ## WARNING: Permanent damage to the screen and NANO-SE-i1/KBN-i1/GLX may occur if the wrong voltage is selected with this jumper. Please refer to the user guide that came with the monitor to select the correct voltage. Jumper Label: JP1 **Jumper Type:** 3-pin header Jumper Settings: See Table 4-4 Jumper Location: See Figure 4-5 The LVDS voltage selection jumper allows setting the voltage provided to the monitor connected to the LVDS connector. | Setting | Description | |---|-----------------| | Short 1-2 | +3.3V (Default) | | Short 2-3 | +5V | | *Please refer to the different use condition with the target device for | | | different jumper setting. | | **Table 4-4: LVDS Voltage Selection Jumper Settings** Figure
4-5: LVDS Voltage Selection Jumper Location # 4.5 Internal Peripheral Device Connections This section outlines the installation of peripheral devices to the on-board connectors #### 4.5.1 Audio Kit Installation The Audio Kit that came with the NANO-SE-i1/KBN-i1/GLX connects to the audio connector on the NANO-SE-i1/KBN-i1/GLX. The audio kit consists of three audio jacks. Mic-in connects to a microphone. Line-in provides a stereo line-level input to connect to the output of an audio device. Line-out, a stereo line-level output, connects to two amplified speakers. To install the audio kit, please refer to the steps below: - **Step 1:** Locate the audio connector. The location of the 10-pin audio connector is shown in **Chapter 3**. - Step 2: Align pin 1. Align pin 1 on the on-board connector with pin 1 on the audio kit connector. Pin 1 on the audio kit connector is indicated with a white dot. See Figure 4-6. Figure 4-6: Audio Kit Cable Connection Step 3: Connect the audio devices. Connect speakers to the line-out audio jack. Connect the output of an audio device to the line-in audio jack. Connect a microphone to the mic-in audio jack. #### 4.5.2 SATA Drive Connection The NANO-SE-i1/KBN-i1/GLX is shipped with a SATA drive cable. To connect the SATA drive to the connector, please follow the steps below. - Step 1: Locate the SATA connector and the SATA power connector. The locations of the connectors are shown in Chapter 3. - Step 2: Insert the cable connector. Insert the cable connector into the on-board SATA drive connector and the SATA power connector. See Figure 4-7. Figure 4-7: SATA Drive Cable Connection - Step 3: Connect the cable to the SATA disk. Connect the connector on the other end of the cable to the connector at the back of the SATA drive. See Figure 4-7. - **Step 4:** To remove the SATA cable from the SATA connector, press the clip on the connector at the end of the cable. #### 4.5.3 Single RS-232 Cable The single RS-232 cable consists of one serial port connector attached to a serial communications cable that is then attached to a D-sub 9 male connector. To install the single RS-232 cable, please follow the steps below. - Step 1: Locate the connector. The location of the RS-232 connector is shown in Chapter 3. - Step 2: Insert the cable connector. Insert the connector into the serial port box header. See Figure 4-8. A key on the front of the cable connectors ensures the connector can only be installed in one direction. Figure 4-8: Single RS-232 Cable Installation - **Step 3: Secure the bracket**. The single RS-232 connector has two retention screws that must be secured to a chassis or bracket. - **Step 4:** Connect the serial device. Once the single RS-232 connector is connected to a chassis or bracket, a serial communications device can be connected to the system. # 4.6 External Peripheral Interface Connection The following external peripheral devices can be connected to the external peripheral interface connectors. - HDMI devices - RJ-45 LAN cable - USB devices - VGA monitors To install these devices, connect the corresponding cable connector from the actual device to the corresponding NANO-SE-i1/KBN-i1/GLX external peripheral interface connector making sure the pins are properly aligned. #### 4.6.1 HDMI Display Device Connection The HDMI connector transmits a digital signal to compatible HDMI display devices such as a TV or computer screen. To connect the HDMI cable to the NANO-SE-i1/KBN-i1/GLX, follow the steps below. - Step 1: Locate the HDMI connector. The location is shown in Chapter 3. - Step 2: Align the connector. Align the HDMI connector with the HDMI port. Make sure the orientation of the connector is correct. Figure 4-9: HDMI Connection Step 3: Insert the HDMI connector. Gently insert the HDMI connector. The connector should engage with a gentle push. If the connector does not insert easily, check again that the connector is aligned correctly, and that the connector is being inserted with the right way up. #### 4.6.2 LAN Connection There are two external RJ-45 LAN connectors on the external peripheral interface panel. The RJ-45 connector enables connection to an external network. To connect a LAN cable with an RJ-45 connector, please follow the instructions below. Step 1: Locate the RJ-45 connector. The location of the LAN connector is shown in Chapter 3. Step 2: Align the connector. Align the RJ-45 connector on the LAN cable with the RJ-45 connectors on the NANO-SE-i1/KBN-i1/GLX. See Figure 4-10. Figure 4-10: LAN Connection Step 3: Insert the LAN cable RJ-45 connector. Once aligned, gently insert the LAN cable RJ-45 connector into the on-board RJ-45 connector. #### 4.6.3 USB Connection The external USB Series "A" receptacle connectors provide easier and quicker access to external USB devices. Follow the steps below to connect USB devices to the NANO-SE-i1/KBN-i1/GLX. - Step 1: Locate the USB Series "A" receptacle connectors. The locations of the USB Series "A" receptacle connectors are shown in Chapter 3. - Step 2: Insert a USB Series "A" plug. Insert the USB Series "A" plug of a device into the USB Series "A" receptacle on the external peripheral interface. See Figure 4-11. Figure 4-11: USB Connector #### **4.6.4 VGA Monitor Connection** The NANO-SE-i1/KBN-i1/GLX has a single female DB-15 connector on the external peripheral interface panel. The DB-15 connector is connected to a CRT or VGA monitor. To connect a monitor to the NANO-SE-i1/KBN-i1/GLX, please follow the instructions below. - Step 1: Locate the female DB-15 connector. The location of the female DB-15 connector is shown in Chapter 3. - **Step 2:** Align the VGA connector. Align the male DB-15 connector on the VGA screen cable with the female DB-15 connector on the external peripheral interface. - Step 3: Insert the VGA connector Once the connectors are properly aligned with the insert the male connector from the VGA screen into the female connector on the NANO-SE-i1/KBN-i1/GLX. See Figure 4-12. Figure 4-12: VGA Connector **Step 4: Secure the connector**. Secure the DB-15 VGA connector from the VGA monitor to the external interface by tightening the two retention screws on either side of the connector. # 4.7 Heat Sink Enclosure # WARNING: Never run the NANO-SE-i1/KBN-i1/GLX without the heat sink secured to the board. The heat sink ensures the system remains cool and does not need addition heat sinks to cool the system. When the NANO-SE-i1/KBN-i1/GLX is shipped it is secured to a heat sink with eight retention screws. If the NANO-SE-i1/KBN-i1/GLX must be removed from the heat sink, the eight retention screws must be removed. Figure 4-13: Heat Sink Retention Screws # 4.8 Driver Download To download drivers from IEI Resource Download Center, follow the steps below. **Step 1:** Go to https://download.ieiworld.com. Type NANO-SE-i1/KBN-i1/GLX and press Enter. **Step 2:** All product-related software, utilities, and documentation will be listed. You can choose **Driver** to filter the result. Step 3: Click the driver file name on the page and you will be prompted with the following window. You can download the entire ISO file (●), or click the small arrow to find an individual driver and click the file name to download (●). # NOTE: To install software from the downloaded ISO image file in Windows 8, 8.1 or 10, double-click the ISO file to mount it as a virtual drive to view its content. On Windows 7 system, an additional tool (such as Virtual CD-ROM Control Panel from Microsoft) is needed to mount the file. Chapter 5 **BIOS** # 5.1 Introduction The BIOS is programmed onto the BIOS chip. The BIOS setup program allows changes to certain system settings. This chapter outlines the options that can be changed. # A NOTE: Some of the BIOS options may vary throughout the life cycle of the product and are subject to change without prior notice. ## 5.1.1 Starting Setup The UEFI BIOS is activated when the computer is turned on. The setup program can be activated in one of two ways. - 1. Press the **DELETE** or **F2** key as soon as the system is turned on or - 2. Press the **DELETE** or **F2** key when the "**Press Del to enter SETUP**" message appears on the screen. If the message disappears before the **DELETE** or **F2** key is pressed, restart the computer and try again. # 5.1.2 Using Setup Use the arrow keys to highlight items, press **ENTER** to select, use the PageUp and PageDown keys to change entries, press **F1** for help and press **Esc** to quit. Navigation keys are shown in. | Key | Function | | |-------------|--|--| | Up arrow | Move to the item above | | | Down arrow | Move to the item below | | | Left arrow | Move to the item on the left hand side | | | Right arrow | Move to the item on the right hand side | | | + | Increase the numeric value or make changes | | | Key | Function | |-----------|--| | - | Decrease the numeric value or make changes | | Page up | Move to the next page | | Page down | Move to the previous page | | Esc | Main Menu – Quit and do not save changes into CMOS | | | Status Page Setup Menu and Option Page Setup Menu | | | Exit current page and return to Main Menu | | F1 | General help, only for Status Page Setup Menu and Option | | | Page Setup Menu | | F9 | Load optimized defaults | | F10 | Save changes and Exit BIOS | **Table 5-1: BIOS Navigation Keys** ## 5.1.3 Getting Help When **F1** is pressed a small help window describing the appropriate keys to use and the possible selections for the highlighted item appears. To exit the Help Window press **Esc** or the **F1** key again. ## 5.1.4 Unable to Reboot after Configuration Changes If the computer cannot boot after changes to the system configuration is made, CMOS defaults. Use the jumper described in Chapter 3. ## 5.1.5 BIOS Menu Bar The **menu bar** on top of the BIOS screen has the following main items: - Main
Changes the basic system configuration. - Advanced Changes the advanced system settings. - Chipset Changes the chipset settings. - Boot Changes the system boot configuration. - Security Sets User and Supervisor Passwords. - Save & Exit Selects exit options and loads default settings The following sections completely describe the configuration options found in the menu items at the top of the BIOS screen and listed above. ## 5.2 Main The **Main** BIOS menu (**BIOS Menu 1**) appears when the **BIOS Setup** program is entered. The **Main** menu gives an overview of the basic system information. | Aptio Setup Utili
Main Advanced Ch | ty - Copyright (C) 2013 America
ipset Boot Security Save | n Megatrends, Inc.
& Exit Server Mgmt | |--|---|--| | BIOS Information BIOS Vendor Core Version Compliency Project Version | American Megatrends 4.6.5.4 UEFI 2.3.1; PI 1.2 SADOAR10.rom | Set the Date. Use Tab to switch between Data elements. | | Build Date and Time iWDD Vendor iWDD Version | 10/30/2014 15:36:23
iEi
SAD0ER10.bin | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect</pre> | | IPMI Module
Chassis Open | N/A
Opened | +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults | | System Date
System Time | [Fri 01/16/2015]
[19:43:27] | F4: Save & Exit ESC: Exit | | Access Level Version 2.16.12 | Administrator
40. Copyright (C) 2013 American | Megatrends, Inc. | **BIOS Menu 1: Main** #### **→** BIOS Information The **BIOS Information** lists a brief summary of the BIOS. The fields in **BIOS Information** cannot be changed. The items shown in the system overview include: BIOS Vendor: Installed BIOS vendor Core Version: Current BIOS version Compliency: Current compliant version Project Version: the board version Build Date and Time: Date the current BIOS version was made #### → iWDD Vendor The iWDD Vendor displays the installed iWDD vendor. The fields in iWDD Vendor cannot be changed. #### → iWDD Version The iWDD Version displays the current iWDD version. The fields in iWDD Version cannot be changed. The System Overview field also has two user configurable fields: #### → System Date [xx/xx/xx] Use the **System Date** option to set the system date. Manually enter the day, month and year. #### → System Time [xx:xx:xx] Use the **System Time** option to set the system time. Manually enter the hours, minutes and seconds. #### 5.3 Advanced Use the **Advanced** menu (**BIOS Menu 2**) to configure the CPU and peripheral devices through the following sub-menus: # WARNING! Setting the wrong values in the sections below may cause the system to malfunction. Make sure that the settings made are compatible with the hardware. # El Integration Corp. #### NANO-SE-i1/KBN-i1/GLX | Aptio Setup Utility - Copyright (C) 2013 America
Main Advanced Chipset Boot Security Save | n Megatrends, Inc.
& Exit Server Mgmt | |--|--| | <pre>> ACPI Settings > Trusted Computing > RTC Wake Settings > CPU Configuration > IDE Configuration > USB Configuration > F81866 Super IO Configuration > F81866 H/M Monitor > Serial Port Console Redirection</pre> | System ACPI Parameters. ←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit | | Version 2.16.1240. Copyright (C) 2013 American | Megatrends, Inc. | **BIOS Menu 2: Advanced** # 5.3.1 ACPI Settings The **ACPI Settings** menu (**BIOS Menu 3**) configures the Advanced Configuration and Power Interface (ACPI) options. **BIOS Menu 3: ACPI Configuration** → ACPI Sleep State [S3 only (Suspend to RAM)] The fields in ACPI Sleep State option cannot be changed. iEi Integration Corp. **Suspend Disabled** Disable the suspend function. S3 only (Suspend DEFAULT The caches a to RAM) off. Power to The caches are flushed and the CPU is powered off. Power to the RAM is maintained. The computer returns slower to a working state, but more power is saved. ## **5.3.2 Trusted Computing** Use the **Trusted Computing** menu (**BIOS Menu 4**) to configure settings related to the Trusted Computing Group (TCG) Trusted Platform Module (TPM). | Aptio Setup Utility -
Advanced | Copyright (C) 2013 America | an Megatrends, Inc. | |---|-----------------------------|---| | Configuration Security Device Support Current Status Information NO Security Device Found | [Disable] | Enables or Disables BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INTIA interface will not be available. | | | | | | | | ↑↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized | | Version 2.16.1240. (| Copyright (C) 2013 American | Defaults F4 Save ESC Exit Megatrends, Inc. | **BIOS Menu 4: Trusted Computing** #### → Security Device Support [Disable] Use the **Security Device Support** option to configure support for the security device. → **Disable Default** Security device support is disabled. → Enable Security device support is enabled. # 5.3.3 RTC Wake Settings The RTC Wake Settings menu (BIOS Menu 5) configures RTC wake event. | Aptio Setup Utility - Copyright (C) 2013 America Advanced | n Megatrends, Inc. | |---|--| | RTC Wake Settings | Enable or disable System wake on alarm event. When | | Wake system with Fixed Time [Disabled] | enabled, System will wake on the date::hr::min::sec specified | | | | | | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect</pre> | | | F1 General Help
F2 Previous Values
F3 Optimized Defaults | | Version 2.16.1240. Copyright (C) 2013 American | F4 Save ESC Exit Megatrends, Inc. | **BIOS Menu 5: RTC Wake Settings** ## → Wake system with Fixed Time [Disabled] Use the **Wake system with Fixed Time** option to enable or disable the system wake on alarm event. | → | Disabled | DEFAULT | The real time clock (RTC) cannot generate a wake | | |----------|----------|---------|--|--| | | | | event | | | → | Enabled | | If selected, the Wake up every day option appears | | | | | | allowing you to enable to disable the system to wake | | | | | | every day at the specified time. Besides, the | | | | | | following options appear with values that can be | | | | | | selected: | | | | | | Wake up date | | | | | | Wake up hour | | | | | | Wake up minute | | Wake up second After setting the alarm, the computer turns itself on from a suspend state when the alarm goes off. # **5.3.4 CPU Configuration** Use the CPU Configuration menu (BIOS Menu 6) to view detailed CPU specifications and configure the CPU. | Aptio Setup Utility - Copyright (C) 2013 America Advanced | an Megatrends, Inc. | |--|--| | CPU Configuration | Enable/disable CPU
Virtualization | | Socket0: AMD GX-212JC SOC with Radeon(TM)R2E Graphics Dual Core Running @ 1210 MHz 925 mV Processor Family: 16h Processor Model: 30h-3Fh | | | Max Speed: 1200 MHZ Intended Speed: 1200 MHZ
Min Speed: 600 MHZ | | | Microcode Patch Level: 7030105 | <pre>←→: Select Screen ↑ ↓: Select Item</pre> | | L1 Instruction Cache: 64 KB/2-way | EnterSelect F1 General Help F2 Previous Values | | L1 Data Cache: 64 KB/8-way L2 Cache: 1024 KB/16-way | F3 Optimized
Defaults | | No L3 Cache Present SVM Mode [Enabled] | F4 Save
ESC Exit | | Core Leveling Mode [Automatic mode] | | | Version 2.16.1240. Copyright (C) 2013 American | Megatrends, Inc. | ## **BIOS Menu 6: CPU Configuration** ## → SVM Mode [Enabled] Use the **SVM Mode** option to enable or disable the CPU virtualization function. | → | Disabled | | Disables the CPU virtualization function | | | |----------|----------|---------|--|--|--| | → | Enabled | DEFAULT | Enables the CPU virtualization function | | | #### Core Leveling Mode [Automatic mode] Use the **Core Leveling Mode** option to configure the number of the active processor cores. | → | Automatic mod | le DEFAULT | Active | the | processor | cores | by | |----------|-------------------------|------------|----------|--------|---------------|----------|----| | | | | automa | tic mo | de | | | | → | Three cores processor | per | Active t | hree o | f the process | or cores | | | → | Two cores processor | per | Active t | wo of | the processo | r cores | | | → | One core processor | per | Active o | one of | the processo | or cores | | ## 5.3.5 IDE Configuration Use the **IDE Configuration** menu (**BIOS Menu 7**) to change and/or set the configuration of the SATA devices installed in the system. **BIOS Menu 7: IDE Configuration** #### → OnChip SATA Channel [Enabled] Use the **OnChip SATA Channel** option to configure Onchip SATA channel. Disabled Disables Onchip SATA channel. **Enabled DEFAULT** Enables Onchip SATA channel. ## → OnChip SATA Type [IDE] Use the OnChip SATA Type option to configure Onchip SATA type. → IDE DEFAULT
Configures SATA devices as normal IDE device. → AHCI Configures SATA devices as AHCI device. # **5.3.6 USB Configuration** Use the **USB Configuration** menu (**BIOS Menu 10**) to read USB configuration information and configure the USB settings. | Aptio Setup Utility - Copy
Advanced | vright (C) 2013 America | n Megatrends, Inc. | |--|-------------------------|--| | USB Configuration | | Enables Legacy USB support. AUTO option | | USB Devices:
1 Keyboard | | disables legacy support
if no USB devices are
connected. DISABLE | | Legacy USB Support | [Enabled] | option will keep USB devices available only for EFI applications. | | | | | | | | ↑↓: Select Item EnterSelect | | | | F1 General Help F2 Previous Values F3 Optimized | | | | Defaults F4 Save ESC Exit | | Version 2.16.1240. Copyr | ight (C) 2013 American | Megatrends, Inc. | **BIOS Menu 8: USB Configuration** #### → USB Devices The USB Devices Enabled field lists the USB devices that are enabled on the system #### → Legacy USB Support [Enabled] Use the **Legacy USB Support** BIOS option to enable USB mouse and USB keyboard support. Normally if this option is not enabled, any attached USB mouse or USB keyboard does not become available until a USB compatible operating system is fully booted with all USB drivers loaded. When this option is enabled, any attached USB mouse or USB keyboard can control the system even when there is no USB driver loaded onto the system. | → | Enabled | DEFAULT | Legacy USB support enabled | |----------|----------|---------|---| | → | Disabled | | Legacy USB support disabled | | → | Auto | | Legacy USB support disabled if no USB devices are | | | | | connected | ## 5.3.7 F81866 Super IO Configuration Use the F81866 Super IO Configuration menu (BIOS Menu 9) to set or change the configurations for the serial ports. **BIOS Menu 9: Super IO Configuration** # 5.3.7.1 Serial Port n Configuration Use the Serial Port n Configuration menu (BIOS Menu 10) to configure the serial port n. | Aptio Setup Utility - Cop
Advanced | yright (C) 2013 America | n Megatrends, Inc. | |---------------------------------------|-------------------------|--| | Serial Port 1 Configuration | | Enable or Disable Serial Port (COM) | | Serial Port | [Enabled] | | | Device Settings | IO=3F8h; IRQ=4 | | | 3 | ~ | | | Change Settings | [Auto] | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre> | | Version 2.16.1240. Copyr | right (C) 2013 American | Megatrends, Inc. | **BIOS Menu 10: Serial Port n Configuration Menu** # 5.3.7.1.1 Serial Port 1 Configuration ## → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. | → | Disabled | | Disable the serial port | |----------|----------|---------|-------------------------| | → | Enabled | DEFAULT | Enable the serial port | ### → Change Settings [Auto] | → | Auto | DEFAULT | The serial port IO port address and interrupt address are automatically detected. | |----------|----------------|---------|---| | → | IO=3F8h; IRQ=4 | | Serial Port I/O port address is 3F8h and the interrupt address is IRQ4 | | → | IO=3F8h; IRQ=3, | Serial Port I/O port address is 3F8h and the | |----------|------------------|--| | | 4,5,6,7,10,11,12 | interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2F8h; IRQ=3, | Serial Port I/O port address is 2F8h and the | | | 4,5,6,7,10,11,12 | interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=3E8h; IRQ=3, | Serial Port I/O port address is 3E8h and the | | | 4,5,6,7,10,11,12 | interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2E8h; IRQ=3, | Serial Port I/O port address is 2E8h and the | | | 4,5,6,7,10,11,12 | interrupt address is IRQ3,4,5,6,7,10,11,12 | # 5.3.7.1.2 Serial Port 2 Configuration # → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. | → | Disabled | | Disable the serial port | |----------|----------|---------|-------------------------| | → | Enabled | DEFAULT | Enable the serial port | ## → Change Settings [Auto] | | Auto | DEFAULT | address are automatically detected. | |----------|-------------------------------------|---------|---| | → | IO=2F8h; IRQ=3 | | Serial Port I/O port address is 2F8h and the interrupt address is IRQ3 | | → | IO=3F8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3F8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2F8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2F8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=3E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | → IO=2E8h; IRQ=3, 4,5,6,7,10,11,12 Serial Port I/O port address is 2E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 # 5.3.7.1.3 Serial Port 3 Configuration ## → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. → **Disabled** Disable the serial port **Enabled DEFAULT** Enable the serial port ## → Change Settings [Auto] | → | Auto | DEFAULT | The serial port IO port address and interrupt address are automatically detected. | |----------|-------------------------------------|---------|---| | → | IO=3E8h; IRQ=10 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ10 | | → | IO=3E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D0h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D0h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | # 5.3.7.1.4 Serial Port 4 Configuration ## → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. | → | Disabled | Disable the serial port | |----------|----------|-------------------------| |----------|----------|-------------------------| **Enabled DEFAULT** Enable the serial port #### → Change Settings [Auto] Use the **Change Settings** option to change the serial port IO port address and interrupt address. | → | Auto | DEFAULT | The serial port IO port address and interrupt address are automatically detected. | |----------|-------------------------------------|---------|---| | → | IO=2E8h; IRQ=10 | | Serial Port I/O port address is 2E8h and the interrupt address is IRQ10 | | → | IO=3E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D0h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D0h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | # 5.3.7.1.5 Serial Port 5 Configuration #### → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. → **Disabled** Disable the serial port **Enabled DEFAULT** Enable the serial port #### → Change Settings [Auto] Use the **Change Settings** option to change the serial port IO port address and interrupt address. | → | Auto | DEFAULT | The serial port IO port address and interrupt address are automatically detected. | |----------|-------------------------------------|---------|---| | → | IO=2D0h; IRQ=10 | | Serial Port I/O port address is 2D0h and the interrupt address is IRQ10 | | → | IO=3E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D0h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D0h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | # 5.3.7.1.6 Serial Port 6 Configuration ## → Serial Port [Enabled] Use the **Serial Port** option to enable or disable the serial port. | → | Disabled | | Disable the serial port | |----------|----------|---------|-------------------------| | → | Enabled | DEFAULT | Enable the serial port | ## → Change Settings [Auto] | → | Auto | DEFAULT | The serial port IO port address and interrupt address are automatically detected. | |----------|-------------------------------------|---------|---| | → | IO=2D8h; IRQ=10 | | Serial Port I/O port
address is 2D8h and the interrupt address is IRQ10 | | → | IO=3E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 3E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2E8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2E8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D0h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D0h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | | → | IO=2D8h; IRQ=3,
4,5,6,7,10,11,12 | | Serial Port I/O port address is 2D8h and the interrupt address is IRQ3,4,5,6,7,10,11,12 | ## 5.3.8 F81866 H/W Monitor The **F8186 H/W Monitor** menu (**BIOS Menu 11**) shows the operating temperature, fan speeds and system voltages. | Aptio Setup Utility - Copy Advanced | yright (C) 2013 America | n Megatrends, Inc. | |---|--------------------------|---| | PC Health Status | | Enable or Disable Smart | | Smart Fan Function > Smart Fan Mode Configuration | [Enabled] | | | CPU Temperature SYS Temperature SYS_FAN Speed | :+62 C
:+29 C
:N/A | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values</pre> | | | | F3 Optimized Defaults F4 Save ESC Exit | | Version 2.16.1240. Copyr | ight (C) 2013 American | Megatrends, Inc. | **BIOS Menu 11: Hardware Health Configuration** # iEi.Integration Corp. #### NANO-SE-i1/KBN-i1/GLX EPIC SBC #### → PC Health Status The following system parameters and values are shown. The system parameters that are monitored are: - System Temperatures: - O CPU Temperature - O SYS Temperature - Fans Speeds: - O SYS FAN Speed #### → Smart Fan Function [Enabled] Use the **Smart Fan Function** option to enable or disable the smart fan function. Disabled Disables the smart fan function. **Enabled DEFAULT** Enables the smart fan function. ## 5.3.8.1 Smart Fan Mode Configuration Use the **Smart Fan Mode Configuration** submenu (**BIOS Menu 12**) to configure the smart fan temperature and speed settings. | Aptio Setup Utility - Copyright (C) 2013 America
Advanced | n Megatrends, Inc. | |--|---| | Smart Fan Mode Configuration | Smart Fan Mode Select | | SYS_FAN Smart Fan Control [Auto Duty-Cycle Mode] SYS Temperature 1 60 SYS Temperature 2 50 SYS Temperature 3 40 SYS Temperature 4 30 | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect + - Change Opt. F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save & Exit ESC Exit</pre> | | Version 2.16.1240. Copyright (C) 2013 American | Megatrends, Inc. | **BIOS Menu 12: Smart FAN Configuration** ## → SYS_FAN Smart Fan Control [Auto Duty-Cycle Mode] Use the SYS_FAN Smart Fan Control option to configure the System Smart Fan. | → | Manual Duty Mode | | The fan spins at the speed set in | |----------|----------------------|---------|---| | | | | Manual by Duty Cycle settings | | → | Auto Duty-Cycle Mode | DEFAULT | The fan adjusts its speed using Auto by | | | | | Duty-Cycle settings | ## → SYS Temperature n Use the + or - key to change the fan **SYS Temperature n** value. Enter a decimal number between 1 and 100. #### 5.3.9 Serial Port Console Redirection The **Serial Port Console Redirection** menu (**BIOS Menu 13**) allows the console redirection options to be configured. Console redirection allows users to maintain a system remotely by re-directing keyboard input and text output through the serial port. **BIOS Menu 13: Serial Port Console Redirection** #### → Console Redirection [Disabled] Use **Console Redirection** option to enable or disable the console redirection function. | → | Disabled | DEFAULT | Disabled the console redirection function | |----------|----------|---------|---| | → | Enabled | | Enabled the console redirection function | # **5.3.9.1 Console Redirection Settings** The **Console Redirection Settings** menu (**BIOS Menu 14**) allows the console redirection options to be configured. The option is active when Console Redirection option is enabled. | Aptio Setup Utility -
Advanced | Copyright (C) 2013 Am | nerican Megatrends, Inc. | |--|--|---| | COM1
Console Redirection Settings | 5 | Emulation: ANSI: Extended ASCII char set. VT100: ASCII char set. | | Terminal Type Bits per second Data Bits Parity Stop Bits | [ANSI]
[115200]
[8]
[None]
[1] | VT100+: Extends VT100 to
support color, function
keys, etc. VT-UTF8: Uses
UTF8 encoding to map
Unicode chars onto 1 or
more bytes. | | | | <pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults</pre> | | Version 2.16.1240. C | opyright (C) 2013 Ame | F4 Save
ESC Exit | **BIOS Menu 14: Console Redirection Settings** # → Terminal Type [ANSI] Use the **Terminal Type** option to specify the remote terminal type. | → | VT100 | | The target terminal type is VT100 | |----------|---------|---------|-------------------------------------| | → | VT100+ | | The target terminal type is VT100+ | | → | VT-UTF8 | | The target terminal type is VT-UTF8 | | → | ANSI | DEFAULT | The target terminal type is ANSI | #### → Bits per second [115200] Use the **Bits per second** option to specify the serial port transmission speed. The speed must match the other side. Long or noisy lines may require lower speeds. | → | 9600 | | Sets the serial port transmission speed at 9600. | |----------|--------|---------|--| | → | 19200 | | Sets the serial port transmission speed at 19200. | | → | 38400 | | Sets the serial port transmission speed at 38400. | | → | 57600 | | Sets the serial port transmission speed at 57600. | | → | 115200 | DEFAULT | Sets the serial port transmission speed at 115200. | #### → Data Bits [8] Use the **Data Bits** option to specify the number of data bits. | → | 7 | | Sets the data bits at 7. | |----------|---|---------|--------------------------| | → | 8 | DEFAULT | Sets the data bits at 8. | ## → Parity [None] Use the **Parity** option to specify the parity bit that can be sent with the data bits for detecting the transmission errors. | → | None | DEFAULT | No parity bit is sent with the data bits. | |----------|-------|---------|---| | → | Even | | The parity bit is 0 if the number of ones in the data bits is even. | | → | Odd | | The parity bit is 0 if the number of ones in the data bits is odd. | | → | Mark | | The parity bit is always 1. This option does not provide error detection. | | → | Space | | The parity bit is always 0. This option does not provide error detection. | #### → Stop Bits [1] Use the **Stop Bits** option to specify the number of stop bits used to indicate the end of a serial data packet. Communication with slow devices may require more than 1 stop bit. **DEFAULT** Sets the number of stop bits at 1. Sets the number of stop bits at 2. # 5.4 Chipset Use the **Chipset** menu (**BIOS Menu 15**) to access the South Bridge and North Bridge configuration menus. # WARNING! Setting the wrong values for the Chipset BIOS selections in the Chipset BIOS menu may cause the system to malfunction. **BIOS Menu 15: Chipset** ## 5.4.1 South Bridge Configuration Use the **South Bridge Configuration** menu (**BIOS Menu 16**) to configure the South Bridge chipset. **BIOS Menu 16: South Bridge Configuration** #### → HD Audio Azalia Device [Enabled] Use the **HD Audio Azalia Device** option to enable or disable the High Definition Audio controller. | → | Auto | | The onboard High Definition Audio controller will be enabled if present, disabled otherwise. | |----------|----------|---------|--| | → | Disabled | | The onboard High Definition Audio controller is disabled | | → | Enabled | DEFAULT | The onboard High Definition Audio controller is detected | | | | | automatically and enabled | #### → Active LVDS1 [Disabled] Use the Active LVDS1 BIOS option to enable or disable LVDS. | → | Disabled | DEFAULT | LVDS is disabled | |----------|----------|---------|------------------| | → | Fnabled | | LVDS is enabled | #### → Power Saving Function (ERP) [Disabled] Use the **Power Saving Function (ERP)** BIOS option to enable or disable the power saving function. **Disabled** DEFAULT Power saving function is disabled. Power saving function is enabled. It will reduce power consumption when the system is off. # **5.4.2 North Bridge Configuration** Use the North Bridge menu (BIOS Menu 17) to view the memory information. **BIOS Menu 17: North Bridge Configuration** # **5.5 Boot** Use the **Boot** menu (**BIOS Menu 17**) to configure system boot options. | | Copyright (C) 2013 Americ | _ | |--|------------------------------------|---| | Main Advanced Chipset | Boot Security Sav | e & Exit | | Boot Configuration Bootup NumLock State Quiet Boot | [On]
[Enabled] | Select the keyboard
NumLock state | |
Option ROM Messages Launch PXE OpROM UEFI Boot | [Force BIOS] [Disabled] [Disabled] | | | Boot Option Priorities | | EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit | | Version 2.16.1240. Cop | pyright (C) 2013 Americar | Megatrends, Inc. | **BIOS Menu 18: Boot** # → Bootup NumLock State [On] Use the **Bootup NumLock State** BIOS option to specify if the number lock setting must be modified during boot up. | _ | | | | |----------|-----|---------|---| | → | On | DEFAULT | Allows the Number Lock on the keyboard to be | | | | | enabled automatically when the computer system | | | | | boots up. This allows the immediate use of the | | | | | 10-key numeric keypad located on the right side of | | | | | the keyboard. To confirm this, the Number Lock LED | | | | | light on the keyboard is lit. | | → | Off | | Does not enable the keyboard Number Lock automatically. To use the 10-keys on the keyboard, press the Number Lock key located on the upper left-hand corner of the 10-key pad. The Number Lock LED on the keyboard lights up when the Number Lock is engaged. | #### → Quiet Boot [Enabled] Use the **Quiet Boot** BIOS option to select the screen display when the system boots. Disabled Normal POST messages displayed → Enabled DEFAULT OEM Logo displayed instead of POST messages #### → Option ROM Messages [Force BIOS] Use the Option ROM Messages option to set the Option ROM display mode. → Force BIOS DEFAULT Sets display mode to force BIOS. **Keep Current** Sets display mode to current. #### → Launch PXE OpROM [Disabled] Use the **Launch PXE OpROM** option to enable or disable boot option for legacy network devices. → Disabled DEFAULT Ignore all PXE Option ROMs **→ Enabled** Load PXE Option ROMs. #### → UEFI Boot [Disabled] Use the **UEFI Boot** option to enable or disable to boot from the UEFI devices. Auto If the first boot HDD is GPT then enable UEFI boot options, otherwise disable, Enabled Boot from UEFI devices is enabled. **Disabled DEFAULT** Boot from UEFI devices is disabled. #### → Boot Option Priority Use the **Boot Option Priority** function to set the system boot sequence from the available devices. The drive sequence also depends on the boot sequence in the individual device section. # 5.6 Security Use the **Security** menu (**BIOS Menu 19**) to set system and user passwords. **BIOS Menu 19: Security** #### **→** Administrator Password Use the **Administrator Password** to set or change a administrator password. #### → User Password Use the **User Password** to set or change a user password. #### **5.7 Exit** Use the **Exit** menu (**BIOS Menu 20**) to load default BIOS values, optimal failsafe values and to save configuration changes. # El Integration Corp. #### NANO-SE-i1/KBN-i1/GLX **BIOS Menu 20: Exit** #### → Save Changes and Reset Use the **Save Changes and Reset** option to save the changes made to the BIOS options and to reset the BIOS configuration setup program. #### → Discard Changes and Reset Use the **Discard Changes and Reset** option to reset the system without saving the changes made to the BIOS configuration setup program. #### → Restore Defaults Use the **Restore Defaults** option to load the optimal default values for each of the parameters on the Setup menus. **F3 key can be used for this operation.** #### → Save as User Defaults Use the Save as User Defaults option to save the changes done so far as user defaults. #### Restore User Defaults Use the **Restore User Defaults** option to restore the user defaults to all the setup options. # 5.8 Server Mgmt Use the Server Mgmt menu (BIOS Menu 21) to access the server management menus. **BIOS Menu 21: IDE Configuration** ### 5.8.1.1 System Event Log Use the System Event Log menu (BIOS Menu 22) to configure the event log. | Aptio Setup Utility - Copyright (C) 2013 American Megatrends, Inc. Server Mgmt | | | | | | | | |---|------------------------|---|--|--|--|--|--| | Enabling/Disabling Options SEL Components | [Enabled] | Change this to anable or disable all features of System Event Logging | | | | | | | Erasing Settings | [Mal | during boot. | | | | | | | Erase SEL When SEL is Full | [No] [Do Noting] | | | | | | | | NOTE: All values changed here do computer is restarted. | not take effect until | → ←: Select Screen ↑ ↓: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit | | | | | | | Version 2.16.1240. Copyr | ight (C) 2013 American | Megatrends, Inc. | | | | | | **BIOS Menu 22: PCH Azalia Configuration Menu** ### → SEL Components [Enabled] Use the **SEL Components** option to enable or disable all features of system event logging during boot. | → | Disabled | Disables | all | features | of | system | event | logging | during | |----------|----------|----------|-----|----------|----|--------|-------|---------|--------| | | | boot. | | | | | | | | **Enabled DEFAULT** Enables all features of system event logging during boot. ### → Erase SEL [No] Use **Erase SEL** option to select options for erasing SEL. The following options are available: | • | No | | Default | |---|----|--|---------| | | | | | - Yes, On next reset - Yes, On every reset #### → When SEL is Full [Do Nothing] Use **When SEL** is **FULL** option to select options for reactions to a full SEL. The following options are available: ■ Do Nothing **Default** Erase Immediately ### 5.8.1.2 BMC network configuration Use the **BMC network configuration** menu (**BIOS Menu 23**) to configure BMC network parameters. | Aptio Setup Utility - Cop | pyright (C) 2013 A | American Megatrends, Inc.
Server Mgmt | |--|--------------------|--| | BMC network configuration | | Select to configure LAN channel parameters statically or dynamically(by BIOS or | | Configuration Address source
Station IP address
Subnet mask
Station MAC address | [Unspecified] | BMC).Unspecified option will
not modify any BMC network
parameters during BIOS phase. | | Router IP address Router MAC address | - | →←: Select Screen ↑ ↓: Select Item Enter: Select | | | | +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit | | Version 2.16.1240. Copy | vright (C) 2013 Am | ESC: Exit
merican Megatrends, Inc. | **BIOS Menu 23: PCH Azalia Configuration Menu** ### → Configuration Address source [Unspecified] Use **Configuration Address source** option to configure LAN channel parameters. The following options are available: Unspecified Default Static - Dynamic-Obtained by BMC - Dynamic-Loaded by BIOS - Dynamic-BMC running Other Protocol # **Regulatory Compliance** #### **DECLARATION OF CONFORMITY** ((This equipment has been tested and found to comply with specifications for CE marking. If the user modifies and/or installs other devices in the equipment, the CE conformity declaration may no longer apply. ### **FCC WARNING** This equipment complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: - This device may not cause harmful interference, and - This device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. ### **Product Disposal** ### CAUTION: Risk of explosion if battery is replaced by an incorrect type. Only certified engineers should replace the on-board battery. Dispose of used batteries according to instructions and local regulations. - Outside the European Union If you wish to dispose of used electrical and electronic products outside the European Union, please contact your local authority so as to comply with the correct disposal method. - Within the European Union The device that produces less waste and is easier to recycle is classified as electronic device in terms of the European Directive 2012/19/EU (WEEE), and must not be disposed of as domestic garbage. EU-wide legislation, as implemented in each Member State, requires that waste electrical and electronic products carrying the mark (left) must be disposed of separately from normal household waste. This includes monitors and electrical accessories, such as signal cables or power cords. When you need to dispose of your device, please follow the guidance of your local authority, or ask the shop where you purchased the product. The mark on electrical and electronic products only applies to the current European Union Member States. Please follow the national guidelines for electrical and electronic product disposal. Appendix C ## **BIOS Menu Options** | → | BIOS Information | 68 | |----------|--|----| | → | iWDD Vendor | 69 | |
→ | iWDD Version | 69 | | → | System Date [xx/xx/xx] | 69 | | → | System Time [xx:xx:xx] | 69 | | → | ACPI Sleep State [S3 only (Suspend to RAM)] | 70 | | → | Security Device Support [Disable] | 71 | | → | Wake system with Fixed Time [Disabled] | 72 | | → | SVM Mode [Enabled] | 73 | | → | Core Leveling Mode [Automatic mode] | 74 | | → | OnChip SATA Channel [Enabled] | 74 | | → | OnChip SATA Type [IDE] | 75 | | → | USB Devices | 75 | | → | Legacy USB Support [Enabled] | 76 | | → | Serial Port [Enabled] | 77 | | → | Change Settings [Auto] | 77 | | → | Serial Port [Enabled] | 78 | | → | Change Settings [Auto] | 78 | | → | Serial Port [Enabled] | 79 | | → | Change Settings [Auto] | 79 | | → | Serial Port [Enabled] | 80 | | → | Change Settings [Auto] | 80 | | → | Serial Port [Enabled] | 80 | | → | Change Settings [Auto] | 81 | | → | Serial Port [Enabled] | 81 | | → | Change Settings [Auto] | 81 | | → | PC Health Status | 83 | | → | Smart Fan Function [Enabled] | 83 | | → | SYS_FAN Smart Fan Control [Auto Duty-Cycle Mode] | 84 | | → | SYS Temperature n | 84 | | → | Console Redirection [Disabled] | 85 | | → | Terminal Type [ANSI] | 86 | | → | Bits per second [115200] | 87 | | → | Data Bits [8] | 87 | | → | Parity [None] | 87 | |----------|--|----| | → | Stop Bits [1] | 88 | | → | HD Audio Azalia Device [Enabled] | 89 | | → | Active LVDS1 [Disabled] | 89 | | → | Power Saving Function (ERP) [Disabled] | 90 | | → | Bootup NumLock State [On] | 91 | | → | Quiet Boot [Enabled] | 92 | | → | Option ROM Messages [Force BIOS] | 92 | | → | Launch PXE OpROM [Disabled] | 92 | | → | UEFI Boot [Disabled] | 92 | | → | Boot Option Priority | 92 | | → | Administrator Password | 93 | | → | User Password | 93 | | → | Save Changes and Reset | 94 | | → | Discard Changes and Reset | 94 | | → | Restore Defaults | 94 | | → | Save as User Defaults | 94 | | → | Restore User Defaults | 94 | | → | SEL Components [Enabled] | 96 | | → | Erase SEL [No] | 96 | | → | When SEL is Full [Do Nothing] | 97 | | → | Configuration Address source [Unspecified] | 97 | Appendix # **Terminology** AC '97 Audio Codec 97 (AC'97) refers to a codec standard developed by Intel® in 1997. ACPI Advanced Configuration and Power Interface (ACPI) is an OS-directed configuration, power management, and thermal management interface. AHCI Advanced Host Controller Interface (AHCI) is a SATA Host controller register-level interface. ATA The Advanced Technology Attachment (ATA) interface connects storage devices including hard disks and CD-ROM drives to a computer. APM The Advanced Power Management (APM) application program interface (API) enables the inclusion of power management in the BIOS. ARMD An ATAPI Removable Media Device (ARMD) is any ATAPI device that supports removable media, besides CD and DVD drives. ASKIR Amplitude Shift Keyed Infrared (ASKIR) is a form of modulation that represents a digital signal by varying the amplitude ("volume") of the signal. A low amplitude signal represents a binary 0, while a high amplitude signal represents a binary 1. BIOS The Basic Input/Output System (BIOS) is firmware that is first run when the computer is turned on and can be configured by the end user CODEC The Compressor-Decompressor (CODEC) encodes and decodes digital audio data on the system. CMOS Complimentary metal-oxide-conductor is a type of integrated circuit used in chips like static RAM and microprocessors. COM COM is used to refer to serial ports. Serial ports offer serial communication to expansion devices. The serial port on a personal DAC The Digital-to-Analog Converter (DAC) converts digital signals to analog signals. DDR Double Data Rate refers to a data bus transferring data on both the rising and falling edges of the clock signal. DMA Direct Memory Access (DMA) enables some peripheral devices to bypass the system processor and communicate directly with the system memory. DIMM Dual Inline Memory Modules are a type of RAM that offer a 64-bit data bus and have separate electrical contacts on each side of the module. EHCI The Enhanced Host Controller Interface (EHCI) specification is a register-level interface description for USB 2.0 Host Controllers. GbE Gigabit Ethernet (GbE) is an Ethernet version that transfers data at 1.0 Gbps and complies with the IEEE 802.3-2005 standard. GPIO General purpose input IrDA Infrared Data Association (IrDA) specify infrared data transmission protocols used to enable electronic devices to wirelessly communicate with each other. L1 Cache The Level 1 Cache (L1 Cache) is a small memory cache built into the system processor. L2 Cache The Level 2 Cache (L2 Cache) is an external processor memory cache. LVDS Low-voltage differential signaling (LVDS) is a dual-wire, high-speed differential electrical signaling system commonly used to connect LCD displays to a computer. MAC The Media Access Control (MAC) protocol enables several terminals or network nodes to communicate in a LAN, or other multipoint networks. | PCle | DCI Everoce (DCIo) is a communi | cations bus that uses dual data lines | |------|---------------------------------|---------------------------------------| | PCIE | PCI Express (PCIe) is a communi | cations bus that uses dual data lines | for full-duplex (two-way) serial (point-to-point) communications between the SBC components and/or expansion cards and the SBC chipsets. Each line has a 2.5 Gbps data transmission rate and a 250 MBps sustained data transfer rate. POST The Power-on Self Test (POST) is the pre-boot actions the system performs when the system is turned-on. QVGA Quarter Video Graphics Array (QVGA) refers to a display with a resolution of 320 x 240 pixels. RAM Random Access Memory (RAM) is a form of storage used in computer. RAM is volatile memory, so it loses its data when power is lost. RAM has very fast data transfer rates compared to other storage like hard drives. SATA Serial ATA (SATA) is a serial communications bus designed for data transfers between storage devices and the computer chipsets. The SATA bus has transfer speeds up to 1.5 Gbps and the SATA 3Gb/s bus has data transfer speeds of up to 3.0 Gbps. S.M.A.R.T Self Monitoring Analysis and Reporting Technology (S.M.A.R.T) refers to automatic status checking technology implemented on hard disk drives. UART Universal Asynchronous Receiver-transmitter (UART) is responsible for asynchronous communications on the system and manages the system's serial communication (COM) ports. UHCI The Universal Host Controller Interface (UHCI) specification is a register-level interface description for USB 1.1 Host Controllers. USB The Universal Serial Bus (USB) is an external bus standard for interfacing devices. USB 1.1 supports 12Mbps data transfer rates, while USB 2.0 supports 480Mbps data transfer rates. VGA The Video Graphics Array (VGA) is a graphics display system developed by IBM. # **Watchdog Timer** The following discussion applies to DOS environment. Contact IEI support or visit the IEI website for specific drivers for other operating systems. The Watchdog Timer is provided to ensure that standalone systems can always recover from catastrophic conditions that cause the CPU to crash. This condition may have occurred by external EMIs or a software bug. When the CPU stops working correctly, Watchdog Timer either performs a hardware reset (cold boot) or a Non-Maskable Interrupt (NMI) to bring the system back to a known state. A BIOS function call (INT 15H) is used to control the Watchdog Timer. #### INT 15H: | AH – 6FH Sub-function: | | | | | | | |---|--|--|--|--|--|--| | AL – 2: Sets the Watchdog Timer's period. | | | | | | | | BL: | Time-out value (Its unit-second is dependent on the item "Watchdog | | | | | | | | Timer unit select" in CMOS setup). | | | | | | Table E-1: AH-6FH Sub-function Call sub-function 2 to set the time-out period of Watchdog Timer first. If the time-out value is not zero, the Watchdog Timer starts counting down. When the timer value reaches zero, the system resets. To ensure that this reset condition does not occur, calling sub-function 2 must periodically refresh the Watchdog Timer. However, the watchdog timer is disabled if the time-out value is set to zero. A tolerance of at least 10% must be maintained to avoid unknown routines within the operating system (DOS), such as disk I/O that can be very time-consuming. When exiting a program it is necessary to disable the Watchdog Timer, otherwise the system resets. ### **EXAMPLE PROGRAM:** ``` ; INITIAL TIMER PERIOD COUNTER W_LOOP: MOV AX, 6F02H ;setting the time-out value MOV BL, 30 ;time-out value is 48 seconds INT 15H ; ADD THE APPLICATION PROGRAM HERE CMP ;is the application over? EXIT_AP, 1 JNE W_LOOP ;No, restart the application MOV AX, 6F02H ;disable Watchdog Timer MOV BL, 0 INT 15H ; EXIT; ``` **Appendix** F # Hazardous Materials Disclosure The details provided in this appendix are to ensure that the product is compliant with the Peoples Republic of China (China) RoHS standards. The table below acknowledges the presences of small quantities of certain materials in the product, and is applicable to China RoHS only. A label will be placed on each product to indicate the estimated "Environmentally Friendly Use Period" (EFUP). This is an estimate of the number of years that these substances would "not leak out or undergo abrupt change." This product may contain replaceable sub-assemblies/components which have a shorter EFUP such as batteries and lamps. These components will
be separately marked. Please refer to the following table. | Part Name | Toxic or Hazardous Substances and Elements | | | | | | |-----------------|--|---------|---------|------------|----------------|-----------------| | | Lead | Mercury | Cadmium | Hexavalent | Polybrominated | Polybrominated | | | (Pb) | (Hg) | (Cd) | Chromium | Biphenyls | Diphenyl Ethers | | | | | | (CR(VI)) | (PBB) | (PBDE) | | Housing | О | О | 0 | 0 | О | О | | Display | О | О | 0 | 0 | О | O | | Printed Circuit | О | О | 0 | 0 | О | О | | Board | | | | | | | | Metal Fasteners | 0 | О | 0 | 0 | О | О | | Cable Assembly | 0 | О | 0 | 0 | О | O | | Fan Assembly | О | О | 0 | О | О | O | | Power Supply | О | О | 0 | 0 | О | O | | Assemblies | | | | | | | | Battery | О | О | 0 | 0 | О | О | O: This toxic or hazardous substance is contained in all of the homogeneous materials for the part is below the limit requirement in SJ/T11363-2006 (now replaced by GB/T 26572-2011). X: This toxic or hazardous substance is contained in at least one of the homogeneous materials for this part is above the limit requirement in SJ/T11363-2006 (now replaced by GB/T 26572-2011). 此附件旨在确保本产品符合中国 RoHS 标准。以下表格标示此产品中某有毒物质的含量符合中国 RoHS 标准规定的限量要求。 本产品上会附有"环境友好使用期限"的标签,此期限是估算这些物质"不会有泄漏或突变"的 年限。本产品可能包含有较短的环境友好使用期限的可替换元件,像是电池或灯管,这些元 件将会单独标示出来。 | 部件名称 | 有毒有害物质 | 有毒有害物质或元素 | | | | | |--------|--------|----------------|------|----------|-------|--------| | | 铅 | 铅 汞 镉 六价铬 多溴联苯 | | | | 多溴二苯 | | | (Pb) | (Hg) | (Cd) | (CR(VI)) | (PBB) | 醚 | | | | | | | | (PBDE) | | 壳体 | 0 | 0 | 0 | 0 | 0 | 0 | | 显示 | 0 | 0 | 0 | 0 | 0 | 0 | | 印刷电路板 | 0 | 0 | 0 | 0 | 0 | 0 | | 金属螺帽 | 0 | 0 | 0 | 0 | 0 | 0 | | 电缆组装 | 0 | 0 | 0 | 0 | 0 | 0 | | 风扇组装 | 0 | 0 | 0 | 0 | 0 | 0 | | 电力供应组装 | 0 | 0 | 0 | 0 | 0 | 0 | | 电池 | 0 | 0 | 0 | 0 | 0 | 0 | O: 表示该有毒有害物质在该部件所有物质材料中的含量均在 SJ/T 11363-2006 (现由 GB/T 26572-2011 取代) 标准规定的限量要求以下。 X: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T 11363-2006 (现由 GB/T 26572-2011 取代)标准规定的限量要求。